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We present a simplified analysis of thermoelectric power of carriers in n–channel
inversion layers on tetragonal materials under the limits of weak and strong elec-
tric field, in the presence of a parallel magnetic field, at low temperatures. Taking
n–channel inversion layers of CdGeAs2 as an example, on the basis of a newly formu-

lated 2D generalized electron energy spectra within the framework of ~k~p formalism
incorporating various anisotropies of the energy band constants, it is found that
thermoelectric power increases with decreasing surface electric field for both limits
in oscillatory manners which are totally band structure dependent. The crystal field
splitting reduces its numerical values. The thermopower exhibits oscillatory incre-
ment with increasing alloy composition for 2D system of ternary materials. The
corresponding well–known results for the two–band Kane model in the absence of
magnetic field have been obtained under certain limiting conditions as special cases
of our generalized analysis.
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1. Introduction

Thermoelectric power of electrons in semiconductors under magnetic field
(TPM) is a very useful physical quantity, since the entropy (which can not be easily
experimentally determined) can be derived from it when knowing experimental val-
ues of the electron concentration [1]. TPM is more accurate than any other relation
for the entropy or the electron statistics, which are considered to be the two most
widely used features of electron thermodynamics of quantum–confined materials.
In recent years, with the advent of quantum Hall effect [2], there has been con-
siderable interest in investigation of the TPM in various materials having different
band structures at low temperatures where the quantum effects become prominent
[3–6]. The analysis of the thermopower gives information about the band structure,
the density–of–states function and the effective electron mass [7]. It appears that
the TPM in n–channel inversion layers of tetragonal materials in the presence of a
parallel magnetic field has yet to be understood for the more important case which
occurs from the consideration of various types of anisotropies in the energy spec-
trum of these materials. This is very significant since the electron transport at low
temperatures in 2D system in the presence of a parallel magnetic field has recently
received considerable attention in the literature [8].

It may be stated that tetragonal materials, having strongly non–parabolic and
non–standard energy bands, are increasingly used in Hall probes, thermal detectors
[9] and light–emitting diodes [10]. Rowe and Shay [11] have demonstrated that the
quasi–cubic model [12] can be used to explain the observed splitting and symmetry

properties of both the conduction and valence bands at the zone center in ~k–space of
such compounds. The s–like conduction band is singly degenerate and p–like valence
bands are triply degenerate. The latter splits into three sub–bands because of spin–
orbit and crystal–field interactions. Kildal [13] proposed an electron dispersion
law in the same material according to which the conduction band corresponds

to a single ellipsoid of revolution at the zone–center in ~k–space. He assumed an
isotropic interband momentum matrix element and isotropic spin–orbit splitting of
the valence band, although the anisotropies of the aforementioned band parameters
are significant physical features of such compounds [14].

In Section 2.1 we shall study the TPM in n–channel inversion layers on tetrag-
onal materials in the presence of a parallel magnetic field in limits of weak and
strong electric field. We shall use the generalized Kildal model [15], by incorporat-
ing the anisotropies in the momentum matrix elements and the spin–orbit splitting
parameters. In Section 2.2 we shall obtain the corresponding results for the three–
band Kane model, the two–band Kane model and that of parabolic models in the
presence of parallel magnetic field. In Section 2.3 we shall derive the well–known ex-
pressions of 2D dispersion relation, the density–of–states function, the 2D electron
statistics in the absence of magnetic field and the TPM for the weak and strong
electric field limits for n–channel inversion layers on small–gap materials whose
energy band structures are defined by two–band Kane model which, in turn, will
exhibit the indirect theoretical test of our generalized analysis. We shall plot the
surface electric field dependence of the TPM under weak and strong electric field
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limits taking n–channel inversion layers on CdGeAs2 as an example. In addition,
we shall also study the alloy composition dependence of the TPM for both limits,
taking n–channel inversion layers on n–Hg1−xCdxTe as an example.

2. Theoretical background

2.1. Formulation of TPM in n–channel inversion layers on tetragonal

materials in the presence of a parallel magnetic field in accordance

with the generalized band model for the weak and strong electric

field limits

The generalized expression of the dispersion relation of conduction electrons in
bulk specimens of tetragonal materials can be writen as [15]

ρ(ε) = f1(ε)p
2

s + f2(ε)p
2

z (1)

where

ρ(ε) = ε(ε+ Eg)

[

(ε+ Eg)(ε+ Eg +∆||) + δ

(

ε+ Eg +
2

3
∆||

)

+
2

9
(∆2

|| −∆2

⊥)

]

,

ε is the total electron energy as measured from the edge of the conduction band in
the upward direction in the absence of any quantization, Eg is the band–gap, ∆||

and ∆⊥ are the spin–orbit splitting parameters parallel and perpendicular to the
c–axis, respectively, δ is the crystal field splitting parameter, ps = h̄ks, h̄ = h/2π,
h is the Planck constant,

k2s = k2x + k2y,

f1(ε) =
Eg(Eg +∆⊥)

2m∗
⊥(Eg + 2∆⊥/3)

[

δ

(

ε+ Eg +
1

3
∆||

)

+

+(ε+ Eg)

(

ε+ Eg +
2

3
∆||

)

+
1

9
(∆2

|| −∆2

⊥)

]

,

f2(ε) =
Eg(Eg +∆||)

2m∗
||(Eg + 2∆||/3)

[

(ε+ Eg)

(

ε+ Eg +
2

3
∆||

)]

,

and m∗
|| and m

∗
⊥ are effective electron masses at the edge of the conduction band,

parallel and perpendicular to the direction of c-axis, respectively. Thus, extending
the method as given in Ref. 16, the 2D electron dispersion laws in n–channel
inversion layers of tetragonal materials in the presence of a parallel magnetic field
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B along y direction can, respectively, be written under weak and strong electric
field limits, as

ρ(E) = w1(E, i)p
2

s + w2(E, i)px + w3(E, i) (2a)

and

ρ(E) = X(E, i)p2s + Y (E, i)px + Z(E, i) (2b)

where E is the total electron energy in the upward direction as measured from the
edge of the conduction band at the surface,

w1(E, i) = f1(E) +
2

3
Si(h̄eFs)

2/3(f2(E))1/3·

·(f ′
2
(E)− f ′

1
(E))

[

(ρ′(E))− f ′
2
(E)ρ(E)

f1(E)

]−1/3

,

Si are the zeros of the Airy function [17], Fs is the normal surface electric field
along z–direction, i is the electric sub–band index (i = 0, 1, 2, ...), e is the electron
charge, the single prime denotes single differentation with respect to E,

w2(E, i) =
4SiBf1(E)

3Fs
(h̄2e2F 2

s f2(E))1/3[(ρ′(E)− f ′
2
(E)ρ(E)(f1(E))−1]−1/3,

w3(E, i) = Si(h̄
2e2F 2

s )(f2(E))1/3
[

ρ′(E)− f ′
2
(E)ρ(E)

f1(E)

]2/3

,

px = h̄kx,

X(E, i) =

[

f1(E) +
f2(E)L(E, i)g2(E)

2
√

g1(E)

]

,

L(E, i) =
4

3
h̄eFe(Si)

3/2(f2(E))−1/2,

g2(E) = −1

2
f ′′(E) +

f ′′
2
(E)f1(E)

2f2(E)
+
f ′′
1
(E)f ′

2
(E)

f2(E)
,

where the double prime denotes double differentation with respect to E,

g1(E) =
1

2
ρ′′(E)− B2

F 2
s

f1(E)− f ′′
2
(E)ρ(E)

2f2(E)
−−f

′
2
(E)ρ′(E)

f2(E)
,

Y (E, i) =
z(E, i)g3(E)

2g1(E)
,
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g3(E) =
2Bf ′

1
(E)

Fs
− 2f ′

2
(E)Bf1(E)

Fsf2(E)

and

z(E, i) = f2(E)L(E, i)
√

g1(E).

The use of Eqs. (2a) and (2b) leads to the expressions for the density–of–states
functions for weak and strong electric field limits as

Nw(E) =
1

8πh̄2

imax
∑

i=0

K1(E, i)H(E − Ew) (3a)

and

Ns(E) =
1

8πh̄2

imax
∑

i=0

K2(E, i)H(E − Es), (3b)

respectively, where

K1(E, i) =
2w2(E, i)w

′
2
(E, i)− 4w′

1
(E, i)w3(E, i)− 4w1(E, i)w

′
3
(E, i)

(w1(E, i))2

+
4w1(E, i)ρ(E, i) + 4w1(E, i)ρ

′(E, i)

(w1(E, i))2
−

2
w′

1
(E, i)

(

w2

2
(E, i)− 4w1(E, i)w3(E, i)− 4w1(E, i)ρ(E, i)

)

(w1(E, i))3
.

H is the Heaviside step function, Ew is the sub–band energy in the low electric
field limit which can be obtained from the equation

ρ(Ew)− w3(Ew, i) = 0, (4a)

K2(E, i) =
2Y (E, i)Y ′(E, i)− 4X ′(E, i)Z(E, i)− 4X(E, i)Z ′(E, i)

(X(E, i))2

+
4ρ′(E, i)X(E, i) + 4ρ(E, i)X ′(E, i)

(X(E, i))2
−

2
X ′(E, i)

(

Y 2(E, i)− 4X(E, i)Z(E, i) + 4X(E, i)ρ(E, i)
)

(X(E, i))3
,
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Es is the sub–band energy in the high electric field limit and can be obtained from
the equation

ρ(Es)− Z(Es, i) = 0. (4b)

Thus, combining Eqs. (3a) and (3b) with the Fermi–Dirac occupation probability
factor, the electron concentration per unit area for both limits can, respectively, be
expressed as

now = (8πh̄2)−1

imax
∑

i=0

(a1(EFw, i) + a2(EFw, i)), (5a)

nos = (8πh̄2)−1

imax
∑

i=0

(a3(EFs, i) + a4(EFs, i)). (5b)

EFs and EFw are the Fermi energies as measured from the edge of the conduction
band at the surface in the absence of magnetic field in the upward direction for
strong and weak magnetic field limits, respectively,

a1(EFw, i) =
2w2

2
(E, i)− 4w1(E, i)w3(E, i) + 4w1(E, i)ρ(E, i)

(w1(E, i))2
|
E=EFw

,

a2(EFw, i) =

S0
∑

r=1

∆rw(a1(EFw, i)),

∆rw,s = 2(kBT )
2r(1− 21−2r) ζ(2r)

d2r

dE2r
Fw,s

,

kB is the Boltzmann constant, T is the temperature, r is the set of real positive
integers, ζ(2r) is the zeta–function of order 2r [17],

a3(EFs, i) =
Y 2(EFs, i)− 4X(EFs, i)Z(EFs, i) + 4ρ(EFs, i)X(EFs, i)

(X(EFs, i))2

and

a4(EFs, i) =

S0
∑

r=1

∆rs(a3(EFs, i)).

The TPM for the present case can, in general, be expressed as [1]

G =
X0

eN0

, (6a)
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where X0 and N0 are the entropy and electron concentration per unit area when
i = 0. Using the results of Tsidilkovskii [1], we get

G =
π2k2BT

3eN0

∂N0

∂(EF − E0)
(6b)

where EF is the Fermi energy when i = 0 and E0 is the zero-point energy.

Thus, combining the appropriate equations, the expressions of the TPM can
easily be obtained for the weak and strong electric field limits.

2.2. Special cases

(a) Under the conditions δ = 0, m∗
|| = m∗

⊥ = m∗ (isotropic effective electron

mass) and ∆|| = ∆⊥ = ∆ (the isotropic spin–orbit splitting parameter), Eq. (1)
assumes the form

h̄2k2

2m∗
= G(ε),

G(ε) =
(ε+ Eg)(ε+ Eg +∆)(Eg + 2∆/3)ε

Eg(Eg +∆)(ε+ Eg + 2∆/3)
, (7)

which is known as the three–band Kane model [18]. Equation (7) is often used
to study the electronic properties of III–V materials, in general, but should be
used for n–InAs where ∆ ≈ Eg. Besides, the electron energy spectra of ternary
and quaternary alloys can also be described by Eq. (7). It may be noted that
the III–V compounds find extensive applications as Bragg reflectors, distributed
feedback lasers, passive filter devices, photo refractive materials and in integrated
optoelectronics [19]. The ternary compounds are very important optoelectronics
materials because their band–gap can be varied to cover the special range from
0.8 to 30 µm [20]. The material find extensive applications in infrared detectors
and photovoltaic detector arrays [20]. The quaternary materials have also received
considerable attention in heterojunction lasers, light emitting diodes, FETs and
various optical devices. Besides, new types of integrated optical devices such as
switches, modulators and filters are made from such quaternary systems [21].

Under the above mentioned substitutions, the 2D electron energy spectrum,
the density–of–states function and the electron concentration in the presence of a
parallel magnetic field in n–channel inversion layers on small-gap materials whose
energy band structures are defined by three–band Kane model, for the weak and
strong electric field limits can, respectively, be expressed as

G(E) =
p2s
2m∗

+ φ(E, i)Px + ψ(E, i), (8a)

G(E) =
p2s
2m∗

+Q(E, i), (8b)
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Nw(E) =
m∗

πh̄2

imax
∑

i=0

[G′(E)− ψ′(E, i) +m∗φ(E, i)φ′(E, i)]H(E − Ew), (9a)

Ns(E) =
m∗

πh̄2

imax
∑

i=0

[G′(E)−Q′(E, i)]H(E − Es), (9b)

Now(E) =
m∗

πh̄2

imax
∑

i=0

(a5(EFw, i) + a6(EFw, i)) , (10a)

Nos(E) =
m∗

πh̄2

imax
∑

i=0

(a7(EFs, i) + a8(EFs, i)) , (10b)

where

φ(E, i) =
Si

m∗
(2eFsm

∗h̄G′(E))2/3
B

3m∗FsG′(E)
,

ψ(E, i) =
Si

2m∗
(2eFsm

∗h̄G′(E))2/3,

Q(E, i) =
2eFsh̄

3m∗
(Si)

3/2
√

m∗G′′(E)

[

1− B2

2m∗G′′(E, i)F 2
s

]

.

Ew and Es can, respectively, be determined from equations

G(Ew)− ψ(Ew, i) = 0 (11a)

G(Es)−Q(Es, i) = 0 (11b)

a5(EFw, i) = m∗φ2(EFw, i)− 2ψ(EFw, i) + 2G(EFw),

a6(EFw, i) =

S0
∑

r=1

∇rw(a5(EFw)), a7(EFs, i) = G(EFs)−Q(EFs),

a8(EFs, i) =

S0
∑

r=1

∇rw(a7(EFs, i)).

Thus, combining the appropriate equations with Eq. (6b), the expressions for the
TPM for the weak and strong electric field limits can easily be obtained in this
case.
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(b) For ∆ ≫ Eg or ∆ ≪ Eg, Eq. (7) is simplified:

ε(1 + αε) =
h̄2k2

2m∗
, α =

1

Eg
. (12)

Equation (12) is known in the literature as the two–band Kand model [22]. In this
case the basic forms of (8) to (11) will be unaltered where

G(ε) = ε(1 + αε), G′(ε) = (1 + 2αε), G′′(ε) = 2α.

(c) For parabolic energy bands, Eg → ∞, Eq. (12) assumes the well–known
form

h̄2k2

2m∗
= ε. (13)

In this case, the basic forms of Eqs. (8a), (9a), (10a) and (11a) will be unaltered
where G(ε) = ε, G′(ε) = 1 and G′′(ε) = 0.

2.3. Simplified results for the two-band models of Kane in the absence

of magnetic field

Under the conditions ∆ > Eg, ∆ ≪ Eg, B → 0, S
3/2
i → (3/2)(i + 3/4) [17],

αEw ≪ 1 and αEs ≫ 1, the expressions for the 2D electron dispersion law, the
density–of–states function and the surface electron concentration for the two–band
Kane model in the absence of magnetic field for the weak and strong electric field
limits can, respectively, be expressed as

E(1 + αE) =
h̄2k2s
2m∗

+

[

3πeFsh̄(1 + 2αE)

2
√
2m∗

]2/3 (

i+
3

4

)2/3

, (14a)

E(1 + αE) =
h̄2k2s
2m∗

+
2πeFsh̄
√

2m∗Eg

(

i+
3

4

)2/3

, (14b)

Nw(E) =
m∗

πh̄2

imax
∑

i=0

(C1 + C2E)H(E − Ew), (15a)

Ns(E) =
m∗

πh̄2

imax
∑

i=0

(1 + 2αE)H(E − Es), (15b)

now =
m∗kBT

πh̄2

imax
∑

i=0

(C1F0(η1) + C2kBTF1(η1) + C2EwF0(η1)), (16a)
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nos =
m∗kBT

πh̄2

imax
∑

i=0

((1 + 2αEs)F0(η2) + 2αkBTF1(η2)), (16b)

where

Ew =
1

2α

[

−
(

1 +
αSi

3m∗
(2eFsh̄m

∗)2/3
)

+

+

√

(

1 +
Si

3m∗
(2eFsh̄m∗)2/3

)2

+
2α2Si

m∗
(2eFsh̄m∗)2/3



 ,

Si =

[

3

2

(

i+
3

4

)]3/2

,

Es =
1

2α

[

−1 +
√

4α(2h̄eFs/3m∗)(Si)2/3(2αm∗)1/2 + 1

]

,

η1 =
EFw − Ew

kBT
,

η2 =
EFs − Es

kBT
,

C1 = 1− 2αSi

3m∗
(2eFsh̄m

∗)2/3,

C2 = 2α

(

1 +
2αEFw

9m∗
(2eFsh̄m

∗)2/3
)

,

and Fj(η) is the one–parameter Fermi–Dirac integral of order j [23]. It must be
mentioned that Eqs. (14a) and (14b) describing the 2D electron energy spectra of
n–channel inversion layers on small–gap materials, whose energy band structures
are defined by the two–band Kane model, was derived for the first time by Antocliffe
et al. [24]. The corresponding electron statistics as given by Eqs. (16a) and (16b)
for the weak and strong electric field limits are also well–known in the literature
[25].

We can sumarize the theoretical background in the following way. We have for-
mulated the expressions for the dispersion relation, the density–of–states function,
the electron statistics and the TPM in n–channel inversion layers of tetragonal
materials in the presence of the parallel magnetic field for the weak and strong
electric field limits by considering the anisotropies of the momentum matrix ele-
ments and spin–orbit splitting parameters together with the proper consideration of
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the anisotropic crystal potential in the Hamiltonian. We have simplified the above
expressions for small–gap materials whose energy band structures are defined by
the three–band Kane model and the two–band Kane model. We have also obtained
the aforementioned expressions for the two–band Kane model in the absence of
magnetic field under certain limiting conditions which are well–known in the litera-
ture [24,25]. The above statement is the indirect theoretical test of our generalized
analysis.

3. Results and discussion

Using the appropriate equations and taking the parameters [9] m∗
⊥ = 0.033m0,

m∗
|| = 0.037m0, δ = −0.21 eV, B = 1 T, Eg = 0.57 eV, ∆|| = 0.36 eV,

∆⊥ = 0.30 eV, T = 4.2 K and εS = 14.3 ε0, we have plotted the normalized
TPM versus electric

Fig. 1. Plots of the normalized TPM versus Fs in the low electric field limit in
n–channel inversion layers of CdGeAs2 in the presence of parallel magnetic field for
(a) our proposed band model, (b) δ = 0; (c) three–band Kane model, (d) two–band
Kane model and (e) parabolic energy band.

field limits in n–channel inversion layers on CdGeAs2 in the presence of a parallel
magnetic field (Figs. 1 and 2, respectively). The curve b corresponds to δ = 0; it
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has been ploted for the purpose of assessing the influence of crystal field splitting on
the TPM. Using the appropriate equations, the plots of TPM corresponding to the
three–band Kane model, two–band Kane model and that of parabolic bands of n–
channel inversion layers on CdGeAs2, with an effective electron massm∗ = 0.035m0

and ∆ = 0.35 eV (for the purpose of numerical computations of the three–band
Kane model), are also shown in Figs. 1 and 2 for the weak and strong electric
field limits, respectively. Using the appropriate equations and the parameters [19]
∆ = (0.63 + 0.24x+ 0.27x2) eV, Eg = (−0.302 + 1.93x+ 5.25× 10−4 T (1− 2x)−
0.810x2+0.832x3) eV, m∗ = 3h̄Eg/4p

2, p2 = (h̄2/2m0)(18+3x) and T = 4.2 K for
n–Hg1−xCdxTe, we have plotted the normalized TPM versus the alloy composition
(shown in Figs. 3 and 4) for the parabolic, two–band and three–band Kane models
for the high and low electric field limits, respectively.

Fig. 2. Plots of the normalized TPM (for B = 2 T) in the high electric field limit
in n–channel inversion layers of CdGeAs2 in the presence of parallel magnetic field
for all cases of Fig. 1.

From Figs. 1 and 2, it appears that the TPM increases in an oscillatory way
with decreasing surface electric fields for both limits The crystal field splitting
parameter diminishes the numerical values of the TPM as evident from both figures.
The TPMs corresponding to different dispersion laws differ widely in accordance
with various band models. The TPM increases with increasing alloy composition
in oscillatory manner for both limits which is also apparent from Figs. 3 and 4.

From the figures, it appears that the crystal field affects the TPM quite signif-
icantly in n–channel inversion layers of tetragonal materials for both limits under
parallel magnetic field. Though TPM also increases nonlinearly with decreasing
surface fields for both limits in various other limiting cases, the rates of incrase
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are different from that in the proposed band model. It may also be noted that if
the direction of application of surface electric field applied perpendicular to the
surface is taken as one of the transverse directions and not as a longitudinal one as
assumed in the present work, the TPM would be different analytically for both lim-
its. Neverthless, the arbitrary choice of the direction normal to the surface would
not result in a change of the basic qualitative features of TPM in the present case.
The plots for n–channel inversion layers of ternary materials are valid for x > 0.17,
since for x < 0.17, the band–gap becomes negative in Hg1−xCdxTe, leading to the
semi–metallic state, although our analysis is valid for n–channel inversion layers of
III–V semiconductors.

Fig. 3. Plots of the normalized TPM versus alloy composition (forB = 1 T and Fs =
104 V/m) in the low electric field limit in n–channel inversion layers of Hg1−xCdxTe
in the presence of parallel magnetic field (a) three–band Kane model; (b) two–band
Kane model and (c) parabolic model.

It may be noted that the variations of the TPM are totally band structure
dependent. The TPM could have been plotted for other physical variables. Our
generalized formalism is valid for various types of 2D materials. We have plotted
only the surface electric field and the alloy composition dependences of the TPM
at both limits, considering only CdGeAs2 and Hg1−xCdxTe in order to keep the
presentation brief. Moreover, the general features of the effects of surface electric
field and the alloy composition on the TPM as discussed here would be valid for
most of the small–gap 2D materials having spherical constant energy surface, since

our results are based on the generalized ~k~p formalism. The influence of energy band
models on the TPM in the present case can also be assessed from our work.
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Fig. 4. Plots of the normalized TPM versus alloy composition (for B = 2 T and
Fs = 106 V/m) in the high electric field limit for all cases of Fig. 3.

We wish to note that formulating the basic 2D dispersion relation, as given
by Eqs. (2a) and (2b), we have considered the crystal field splitting parameter,
the anisotropies of the momentum matrix elements and the spin–orbit splitting
parameter. They are important physical features of tetragonal materials [15]. In
the absence of crystal field splitting and with the assumptions of isotropic effective
electron mass and isotropic spin–orbit splitting parameter, Eq. (1) converts into
the three–band Kane model as given by Eq. (7). The three–band Kane model is
valid for III–V compounds, ternary and quaternary alloys, but in should also be
used for studying the physical properties of n–InAs where the spin–orbit splitting
parameter is of the order of the band–gap. Incidentally, for many important small–
gap materials, ∆ ≫ Eg or ∆ ≪ Eg. Under these conditions, Eq. (7) converts
into Eq. (12) which is known as the two–band Kane model. Finally, for Eg → ∞,
as for parabolic energy bands, Eq. (12) transforms into the well–known form ε =
h̄2k2/2m∗. We have also obtained the well–known expressions of the 2D dispersion
relation, the density–of–states function and the surface electron statistics for the
weak and strong electric field limits in the absence of magnetic field for n–channel
inversion layers on small–gap materials whose energy band structures are defined
by the two–band Kane model which, in turn, presents the indirect theoretical tests
of the TPM at low temperatures for the weak and strong electric field limits in
n–channel inversion layers on small–gap materials having different band structures
in the presence of a parallel magnetic field.

It may be remarked that only for materials having parabolic energy band we can
obtain the exact 2D electron dispersion law for all values of surface electric field.
However, the exact formulation of the same for the three–band Kane model, where
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the combined influence of ∆ and Eg have been taken into account, for all values
of surface electric field without any approximation is not possible due to analytical
difficulties [24]. In this paper, we have studied the TPM in n–channel inversion

layers of tetragonal materials on the basis of the generalized ~k~p theory where the
combined influence of the anisotropies in the effective electron mass and the spin–
orbit splitting have been taken into account with the proper consideration of the
crystal field splitting. Thus, the formulation of the exact 2D dispersion law for all
values of the surface electric field presents a formidable problem. The formulation
of any electronic property in any electronic material is based on the corresponding
dispersion law. We have adjusted the physical parameters to obtain the inequalities
in computations. It may be noted that the results for the low electric field limits
can not be at all connected with the corresponding results of the high electric field
limits, due to the presence of the fundamental defining inequalities for both the
weak and strong electric fields regions, respectively.

We wish to note that since the experimental values of TPM in the present case
are not available in the literature to the best of our knowledge, we can not compare
our mathematical analysis with the experimental data, although the theoretical
results as given in this context would be useful in analysing the experimental results
when they appear. It may be noted that the present expressions of 2D electron
statistics under parallel magneto–transport would be useful, since the study of
the transport phenomena and the formulation of the various transport coefficients
depend on the carrier statistics in such materials. Finally, we can write that the
conclusions made here would be important in view of the fact that the Einstein
relation for the diffusivity–mobility ratio, the electronic contribution to the elastic
constants and the noise power can be connected with the TPM [26].
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O TERMOELEKTRIČNOJ SNAZI U INVERZNIM SLOJEVIMA n–TIPA NA
TETRAGONALNIM MATERIJALIMA U PARALELNOM MAGNETSKOM

POLJU

Izlažemo pojednostavljenu analizu termoelektrične snage pokretnih nositelja naboja
u inverznim slojevima n–tipa na tetragonalnim materijalima u granicama slabog
i jakog električnog polja, u magnetskom polju i na niskim temperaturama. Na
primjeru inverznih slojeva CdGeAs2 n–tipa, na osnovi novih 2D generaliziranih

elektronskih energijskih spektara i u okviru ~k~p formalizma uz različite anizotropije
konstanata energijskih vrpci, utvrdeno je da termoelektrična snaga raste sa sma-
njenjem površinskog električnog polja na obje granice, uz oscilacije koje su potpuno
ovisne o strukturi vrpce. Cijepanje kristalnog polja smanjuje termoelektričnu snagu.
Termoelektrična snaga pokazuje oscilacijsko povećanje pri povećanom sastavu za
2D sisteme ternarnih materijala. Poznati rezultati dvo–vrpčastog Kaneovog modela
se dobivaju uz neke granične uvjete kao posebni slučajevi naše općenite analize.
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