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A practical computer simulation of the network models of amorphous semiconductors, us-
ing the Monte-Carlo method, has been developed. A randomly chosen atom of the structure
is slightly displaced by a random amount and in a random direction. After each move, the
potential energy of the amorphous structure is calculated, and the new position is retained
in the case of decrease of energy. The iterative procedure was stopped when the energy did
not decrease any more. The model is tested by the radial distribution functions before and
after the computation and compared to the experimental data from X-ray diffraction.

PACS numbers: 61.43.Dq, 68.55.Jk UDC 538.975, 539.213

Keywords: network model of amorphous semiconductor, computer simulation, Monte-Carlo
method, displacements in random directions and of random amplitudes, energy minimization

1. Introduction

The experimental data obtained for vacuum-deposited semiconductor thin films indi-
cate the following types of structures of these materials:

a) the non-crystalline (amorphous) structures,

b) the crystalline phases of higher or lower symmetry, and

c) the polycrystalline phases with crystallites of variable dimensions.
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The vacuum deposition onto a low-temperature support mainly causes the formation of
the amorphous phase. In an amorphous semiconductor, the covalent bonds determine the
neighborhood order, which is lost at the increasing distance due to small radial and angular
disturbances. Among the first simulations of amorphous semiconductor structure known in
the literature, we can mention those of Kaplow, Rowe and Averbach [1] for amorphous se-
lenium, and of Henderson and Herman [2] for germanium. They used mechanical models.
The Monte-Carlo method is generally used for the computer simulation of the structures.
A pseudo-random number generator can simulate the deposition of add-atoms onto a sub-
strate, their migration in different directions, the creation of initial condensing centre, and
rotation of these atoms for local bonds matching and for torsion reduction in bonds. In
this method, the structure parameters in intermediate stages of the structure evolution are
recorded in computer files. Finally, the new computer model is validated by comparing the
initial and final radial distribution functions with the X-ray diffraction data.

In such a model, Shevchik and Paul [3] begin the calculations with an initial condensing
centre, subsequently adds new atoms, and slightly distorts the bonds around a 20Æ wide
solid angle. In the new variant of the model, the new add-atoms are rotated in order to
reduce torsion energy of new bonds.

Duffy et al. [4] proposed a new procedure for the minimization of the structure de-
formation energy by acting simultaneously on bond lengths and angles. After every dis-
placement of an atom, they have recalculated the forces in the structure, and the process
converged under certain reasonable conditions.

2. The simulation models

Our computer simulation was performed in two stages. In the first stage, we have simu-
lated the structure of small metallic crystalline condensing centres emerging on a substrate
from vapours [5,7], with a limited migration on the support surface. The evaluation of
energy of different possible configurations (trigonal, octahedral, hexagonal, pentagonal)
leads to the conclusion that the minimum of energy corresponds to the pentagonal centre -
the most stable geometric form of these structures. Thus, it was confirmed that the amor-
phous state can be formed by vacuum deposition provided that the energy of the incoming
atom is rapidly absorbed by the cold substrate. In this way, the migration of an incident
atom occurs only at small distances, which favours the pentagonal configuration. On the
contrary, on a hot substrate, large germs of condensation centres can appear which favour
another crystalline configuration.

After these preliminary simulations, which have clearly illustrated that the pentagonal
configuration is incompatible with the translation symmetry necessary for the spacially
ordered lattice growth, we have approached the second stage - of the amorphonic germa-
nium models. All computations were done for germanium, because it is the only element
for which some experimental values of transformation enthalpies are available. We have
studied the amorphous models of 17, 41, 57 and 98 germanium atoms [6,8].

For the amorphous models, we have used a combined simulation procedure. First, we
have realized a physico-mechanical model - a pentagonal dodecahedron - made of sylon
connections (Fig. 1), the basic unit of amorphous germanium structure. For instance, in
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a 57-atom germanium amorphone, we can find four such interconnected dodecahedrons
(Fig. 2).

Fig. 1. The pentagonal dodecahedron - the basic fifth-order symmetry cell for amorphous
germanium.

Fig. 2 (right). A 57-atom amorphone germanium model made of 4 interconnected pentag-
onal dodecahedrons. The fourth dodecahedron is behind the three shown in the figure.

The initial coordinates used in the computer programmes were obtained by optical
methods. In the simulation, we have considered three types of deforming potential:

� the radial deforming potential:

V1 =C1(r
2
1� r2

0) (1)

where r0 = 0:245 nm is the equilibrium distance between the closest neighbouring
atoms andC1 = 23:75 fN/nm2 (femtonewtons per square nanometer,C1 = 2:375�10�5

µdin/Å2) the length-stretching constant;

� the angular deforming potential:

V2 =C2(α�αt)
2

(2)

where α is the bond angle,αt � the ideal tetrahedral angle of 109Æ25’ and C2 = 2:063
fN/deg2 ( C2 = 2:063�10�4µdin/deg2) is the bond-curving constant;

� the potential of relative rotation of tetrahedrons:

V3 =C3

�
θ�

π
3

�2
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whereθ is the dihedral angle between two adjacent tetrahedrons andC3 = 0:3495 fN/deg2

( C3 = 3:495�10�5µ dyn/deg2) is the bond-torsion constant. The potentialV3 must be
included for each of the six interactions between atoms up to the third-order neighbouring.

The total potential energy is evaluated by summation over all interactions of the V1,
V2 and V3 potential types and over all atom pairs in the cluster:

V =∑
i

∑
j

Vi j (k) (4)

In order to give an idea of the complexity of the calcation, we show in Table 1 the
interaction modes for the first five atoms belonging to the 17-atom amorphone with the
order of first, second and third (I, II and III) neighbouring atoms.

TABLE 1. The 17-atom amorphone model. The ways of interaction for the first five atoms
with first, second and third (I, II and III) neighbouring atoms.

Atom Neighbouring order Atoms connected

I 2, 5, 6, 7

(1) II 3, 4, 8, 9, 14, 15

III 4, 10, 11; 3, 12, 13

I 1, 3, 8, 9

(2) II 5, 6, 7, 4, 10, 11

III 4, 14, 15; 5, 12, 13

I 2, 4, 10, 11

(3) II 1, 8, 9, 5, 12, 13

III 5, 6, 7; 1, 14, 15

I 3, 5, 12, 13

(4) II 3, 10, 11; 1, 14, 15

III 1, 8, 9; 2, 6, 7

I 1, 4, 14, 15

(5) II 2, 6, 7; 3, 12, 13

III 3, 8, 9; 2, 10, 11

It is obvious that for the models of 41, 57 and 98 atoms, more complicated relations
are encountered.

In the computations, we use a pseudo-random number generator to choose an atom
from in cluster, the length of the displacement of the atom in a certain pre-established
range and the direction of displacement (independently for eachX, Y andZ coordinate).
Using the potentialsV1, V2 andV3, we first evaluate the total potential for the entire model.
After that, we choose another atom with the corresponding random displacement and recal-
culate the new total potential. If it diminishes, we retain the new coordinates and continue
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the process until the total potential does not diminish any more. The final coordinates
are retained and the radial distribution functions (RDF) are calculated. We compare them
with the initial RDF and with the experimental RDF data obtained fromX-ray diffraction
experiments.

The main programmes are completed with some other programmes that are evaluating
the angular and azimuthal fluctuations around RDF forms in order to evaluate which part
of the model is more sensitive.

The programmes were first written in FORTRAN IV [6] and later in TURBO PASCAL
and BORLAND DELPHI.

In the new versions of the programme, we have added the visualization on the computer
screen of the spatial arrangement of atoms, the time evolution of the model and the rotation
facilities.

3. Results and discussion

We shall comment here only the results of the simulation performed on icosahedric
entity of the 57-atom amorphone with the pentagonal structure, composed of four inter-
connected pentagonal dodecahedrons shown in Fig. 2.

As is known, for an atomic system of the fifth-order-symmetry, the addition of a new
atom to the central atom causes large strains between different parts of the amorphone, due
to the angular misfit introduced by the 1.5Æ deviation from the tetrahedral angle, character-
istic of the atomic packing compatible with the three-axis translation symmetry.

In the 57-atom amorphonic model, the total potential reaches the minimum after about
50000 iterative computation cycles, from which 40% were useful (retained) moves, while
allowing the atomic displacements up to 2 pm. Although the minimum of energy was
closely attained, the amorphonic configuration did not permit a perfect arrangement of
atoms at the ideal equilibrium distance of 0.245 nm.

Figure 3 shows the RDF obtained from the simulation model and the experimental re-
sults obtained by Schevchik and Paul [3] by X-ray diffraction on amorphous germanium
thin films as well as RDF for crystalline germanium. We can observe that the RDF from the
computer simulation reproduces very well the first two coordination maxima in these mod-
els. The third maximum does not exist in the amorphonic model due to the fact that other
coordination spheres are practically merged two by two. The positions of coordination
spheres for non-crystalline germanium (amorphous thin film) show clear differences com-
pared to the crystal, but noticeable resemblances with the computer amorphonic model.
Indeed, the third coordination sphere of about 0.445 nm is completely absent in amor-
phonic model and is negligible in amorphous germanium. Further coordination spheres
correspond again very well to the coordination spheres from the amorphone.
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Fig. 3. The RDF a) for 57-atom amorphonic model; b) crystalline germanium; c) amor-
phous germanium.

The phenomenon was confirmed by running again the computer model, but only with
the interaction potentials V1 and V2, neglecting the rotation potential V3 (for the dihedral
angle) which seems to have a negligible influence on the final structure. Obviously, the
convergence was faster, but that experiment proved once again the character of rigid closed
structure of the tetrahedral germanium element.

We calculated the r.m.s. deviation of the atomic distances, and obtained
q
(∆r)2 = 20

pm. That is much larger than the one obtained for other structural models of amorphous
germanium (3.4 pm for the continuous noncrystalline network [10]). The experimental
value obtained by Shevchick and Paul [3] in X-ray diffraction experiments in amorphous
germanium thin film is 4.4 pm.

The size of the second coordination sphere gives important information on the angular
dispersion of atomic bonds. The calculation of this dispersion in various models shows that

the continuous noncrystalline network model yields a value of 7.16Æ for
q
(∆α)2. The Polk

and Boudreaux model [11] shows an angular dispersion of 7.1Æ and that of Steinhardt and
others [12] a value of 6.66Æ. In our amorphone model, we have obtained a dispersion of
4.1Æ in inner rings of five atoms. This proves again that even when using the dispersion of
angular length distortions, the amorphone model can explain to a certain degree the onset
of amorphonic phase for germanium.

As was shown by Grigorovici [13], the amorphone represents a structure with a mini-
mum of free-energy. The structure of covalently bonded diamond atoms or wurtzitic con-
figurations has higher energies due to the free bonds, and consequently they would be less
stable.
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Fig. 4. The angular dihedral distribution for inner and outer rings of the amorphone struc-
ture.

In Fig. 4, we present the angular dihedral distributions for inner and outer rings of the
amorphone structure. The r.m.s. deviation increases for the external rings which proves a
larger deformation of amorphone in the exterior.

Compared to the case of crystalline germanium structure, where dihedral angles have
only a single value of 60Æ (intercalated bonds), the range of values in the amorphone struc-
ture is relatively large (between 0Æ and 8Æ).

According to the present concept, the amorphone phase corresponds to a random orien-
tation of atoms, which implies a uniform distribution of angular rotation over the interval
between 0Æ and 60Æ. It is very interesting to follow the distribution of distortion energy
per germanium atom. In the crystalline phase, all germanium atoms are considered to be
equivalent, and the distortion energy per atom is equal to zero. In amorphous germanium,
one might expect that the atoms should be equivalent, so each atom should have a bond
energy of an unknown repartition. Since the amorphone model prefigurates an ideal non-
crystalline structure, the repartition of distortion energy distribution on it should suggest
what could really happen in a real amorphone. We have calculated the free energy per atom
and represented it as a function of the distance to amorphone centres (Fig. 5).
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Fig. 5. The angular dihedral distribution for inner and outer rings of the amorphone struc-
ture.

4. Conclusion

When the central amorphone part corresponds to a low energy per atom, the larger
coordination spheres include atoms with a higher free-energy. The low minimum-energy
amorphone also presents a slow structural distortion, which may be explained by the de-
crease of the total distortion energy. It is obvious that the amorphone structure is an inter-
mediate state between the real amorphone and the crystal.

From the above considerations, it follows that the model presents significant resem-
blance with the amorphous germanium structure, as was proved by the X-ray experiments
[10]. However, at the same time some less essential differences persist, which makes this
structure a limiting model that facilitates the understanding of certain aspects of the amor-
phonic structure.
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MONTE-CARLO SIMULACIJE NEPREKIDNOG MRĚZNOG MODELA TANKIH
AMORFNIH SLOJEVA GERMANIJA

Razvili smo praktiˇcnu metodu raˇcunalne simulacije mreˇznih modela amorfnih poluvodiˇca
primjenom Monte-Carlo metode. Nasumce odabrani atom u strukturi je malo pomaknut u
nasumce odabranom smjeru i za sluˇcajno odred–en iznos. Nakon svakog pomaka raˇcunala
se je potencijalna energija amorfne strukture, a novi se poloˇzaj zadržao u sluˇcaju smanjenja
energije. Iterativni postupak je zaustavljen kada se energija prestala smanjivati. Model se
je ispitao funkcijom radijalne raspodjele prije i nakon raˇcuna, te usporedio s podacima
dobivenim mjerenjem rasprˇsenja X-zraˇcenja.
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