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The aim of this work is to show the importance of the theorem on the separation of
coupled differential equations in elastic scattering when the electron energy is below
the threshold necessary to produce excitation of the state 1 from the ground state 0.
We apply a schematical model to study the resonance effects in electron-hydrogen
scattering. We are concerned with the behaviour of various cross-sections in the
neighbourhood of the threshold of a new mode of scattering in which the electron
possesses any quantized angular momentum, and examine the effects of the change
in the centrifugal potentials in the case 1s-2s-2p close-coupling approximation. We
conclude by discussing the threshold behaviour and its relation to resonance effects.
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1. Introduction

Previously, we studied the energy variations of cross-section of electron colli-
sions with atoms [1]. The features such as the Ramsauer-Towned effect have been
considered [2] and a theoretical description provided, but some effects in the elastic
cross-sections as a function of electron energy have not been explained. The sharp
peaks observed with high resolution equipment cannot be understood theoretically
in the same way and we now consider how they arise in some cases. In partic-
ular, there exist some models which can reproduce well the resonance effects for
restricted cases, but a global understanding of these resonance effects still needs to
be explicited.
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In this paper, we are concerned with the behaviour of the cross-sections in the
neighbourhood of the threshold of new modes of collision. The principal interest in
such an investigation arises from the theoretical difficulty in resolving the system
of coupled differential equations (CDE) which is related to the resonance effects.
These difficulties can be overcomed using the theorem on the separation of CDE in
some particular cases [3].

We introduce the basic theory of the resonance phenomena where we consider
the effects arising from the interaction between the discrete and continuum states.
The simplest cases of resonance of concern are those that arise in doubly-excited
states of H− and in elastic scattering when the electron energy is below the threshold
value necessary to produce excitation.

The analysis can be extended without difficulties to the cases in which the
electron possesses any quantized angular momentum. We obtain the oscillations
of the cross-sections in the neighbourhood of the threshold by solving the coupled
equations quite accurately, no matter how large the coupling potential may be, so
that we have means of determining the positions and level widths of the resonances
to a much better accuracy.

The results obtained in this work show the importance of the theorem on sepa-
ration of the coupled differential equations which governs the problem of collision
in cases when the angular momentum l /=0. We conclude by discussing the threshold
behaviour and its relation to resonance effects.

2. Accurate calculation of resonance parameters related

to coupled equations

The theory mentioned in Ref. [4] is essentially a perturbation treatment in
which the interaction between the discrete and continuum states is assumed to be
small. For many purposes, this is a valid approximation for electron collisions with
atoms, and in any case it seems to bring out clearly the physical principes involved.
The most accurate calculation of resonance parameters to date have been made by
using a somewhat more direct approach based on the usual expansion of atomic
eigenfunctions.

Recently [5], it has been shown that the system of CDE which are involved in
the theory of collisions can be made tractable by the method of the decoupling
operations which transform the original problem into a chain of subsystems of two
coupled equations which are to be solved successively. These partial solutions can
then be recombined afterwards by inverse transformation to reconstruct the exact
solutions.

For example, consider the scattering of electron by a hydrogen atom. In order
to obtain a collision wave function that includes the effects of resonance due to
H− states based on the 2s and 2p states of neutral atom, it seems reasonable to
suppose that only the 2s and 2p atomic wave functions need to be included in the
expansion of the eigenfunction. We shall assume the following simplifications:
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• Ignore the energy degeneracy between the 2s and 2p states.
• Seek only the resonance effects due to H− states based on the 2s state.
• Assume that the electron energy E1 is so low that only s-scattering is involved.
• Neglect exchange effects.
The collision wave function is approximated by

Ψ = ψ0(r2)F0(r1) + ψ1(r2)F1(r1) , (1)

where ψ0 and ψ1 are the respective wave functions of the 1s- and 2s-states of atomic
hydrogen. If k is the incident-electron wave number, which is below the threshold
value necessary to produce excitation of the 2s state, then the angular momentum
is zero in both initial and final states. By writing

F0 = (kr)
−1G0 , (2)

F1 = (kr)
−1G1 ,

the coupled equations take the form(
d2

dr2
+ k2 − U00

)
G0 = U01G1 , (3)

(
d2

dr2
− κ2 − U11

)
G1 = U01G0 . (4)

We require solutions for G0 and G1 which vanish at r = 0 and have the asymptotic

G0 ∼ sin kr + αeikr , (5)

G1 ∼ βe−κr , (6)

where k2−k20 = −κ2, k20 is written for 2m|E0−E2|/h̄2, and E0 and E1 are energies
of the 1s- and 2s-states, respectively. The functions U00, U01 and U11 are given by

Uij =
2me2

h̄2

∫ (
− 1
r1
+
1

r12

)
ψi(~r2)ψ

∗
j (~r2)d~r2 . (7)

As both ψ0 and ψ1 are real, Uij = Uji.

If U11 is attractive and sufficiently large in absolute magnitude, there will exist,
for certain values of κ, solutions of the homogeneous equations(

d2

dr2
− κ2 − U11

)
φ = 0 , (8)
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which represent bound states.

We denote these bound-state wave functions by φ1, φ2, . . . , φn. Corresponding
to each of these states, there will be bound states of energy

−h̄2κ21/(2m), −h̄2κ22/(2m), . . .− h̄2κ2n/(2m) .

If the coupling U01 = U10 were vanishingly small, we would have (with k
2 − k20 =

−κ21, −κ22, . . . ,−κ2n) two degenerate solutions of the wave equation describing the
collision. One, ψ0(r1)F0(r2), belongs to a continuum while the other, ψ1(r1)φj(r2)
is a discrete function corresponding to a doubly-excited state of H−.
In fact, resonance effects should be apparent for values of k2 such that κ2 is near

one of the values κ21, κ
2
2, . . . , κ

2
n. Then, the analysis based on approximate solution

of Eqs. (3) and (4) leads to the Breit-Wigner formulae [4], which give the partial
elastic and inelastic cross-sections as functions of k2 (the energy of the incident
particle) which have a typical resonance shape, and which have been often applied
in nuclear physics [6].

On the other hand, it is possible to solve the coupled equations using the theorem
on separation of CDE, such as (3) and (4), quite accurately no matter how large
the coupling U01 may be, so that widths of the resonance can be obtained to a
better precision.

3. The model of resonance phenomena

In order to support our conclusions, our model calculations will be improved
using two requirements:

(a) The conditions required by the theorem on separation of CDE should be
satisfied so that these equations can be solved directly.

(b) The model should, at least schematically, reproduce some new features which
are not predicted in the previous approach.

As an illustration, we propose a simple schematic model, in which the potentials
U00, U01 and U11 are constant for r < a and zero for r > a. Then the solutions
of Eqs. (3) and (4) in the second region (r > a) can be obtained in the following
forms:

G0 = sin kr + αe
ikr , (9)

G1 = βe
−κr . (10)

In the first region (r < a), where the direct potentials are constants and U01 = C,
the system (3) and (4) can be solved using the theorem on separation of CDE. The
solutions are given by

G0 = A1 sinω1r +A2 sinω2r , (11)

G1 = (k
′2 − ω21)C−1A1 sinω1r + (k′2 − ω22)C−1A2 sinω2r , (12)
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where A1 and A1 are constants,

k′2 = k2 − U00 , κ′2 = −κ2 − U11 ,

2ω21 = (k
′2 + κ′2) +

√
(κ′2 − k′2)2 + 4C2 ,

2ω22 = (k
′2 + κ′2)−

√
(κ′2 − k′2)2 + 4C2 .

By matching these solutions at r = a to the asymptotic forms (9) and (10), the
values of α and β were obtained. The elastic cross-section is given by

Qel0 = (4π/k
2) |α|2 . (13)

For numerical calculation, the values a = 1, U11 = −6.25 and U00 = −1, were
assumed, and the solution evaluated for a number of values of the coupling con-
stant U01 = C (see Fig. 1). The elastic cross-sections are shown as functions of
energy for the case in which the resonance level appears for k2 = 0.77. The exci-
tation energy was chosen so that k2 = 2.25− κ2, giving the undisplaced level at
k2 = 1.48. The resonance effect is clearly seen as well as the increased shift and
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Fig. 1. Resonance effects in elastic scattering below the inelastic threshold for
different strengths of the coupling interaction U01. Note the increase in the width
of the resonance peak and of the displacement of the maximum from the uncoupled
location as U01 increases, for the case l = 0.
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width as U01 increases. The maximum cross-section remains 4π/k
2 until the shift

is so large that the maximum is displaced to negative values of k2. In reality, the
form of the cross-section in passing through the resonance region will depend on
the interference between the resonance and mean potential scattering terms in Eq.
(13).

4. Extension to scattering of electrons with non-zero

angular momentum

Although we have restricted the analysis in the previous paragraph to scattering
of s-electorns, it is not difficult to extend it to the cases in which the electron
possesses any quantized angular momentum.

If we are considering the scattering of electrons in the state 1, with insufficient
energy to produce excitation, by an atom in the ground state 0, there exists a
doublet resonance state of orbital angular momentum h̄

√
L(L + 1). The discussion

of the previous paragraph may readily be generalized to equations of the form

(
d2

dr2
+ k2 − U00 − l(l + 1)

r2

)
G0l = U01G1l , (14)

(
d2

dr2
− κ2 − U11 − l(l + 1)

r2

)
G1l = U01G0l , (15)

where we ignore the difference in centrifugal potentials in these equations and use
the one corresponding to l0 = l1 = l in all channels. The states which couple to
the initial state must then have also L = 1. The solutions of these equations must
satisfy the following conditions

G0l(0) = G1l(0) = 0 , (16)

and have either of the asymptotic forms

G0l ∼ il sin(kr − lπ/2) + αl ei(kr−lπ/2) , (17)

G1l ∼ βle−κr−ilπ/2 . (18)

Under these conditions, we may decouple Eqs. (14) and (15) using the theorem on
the separation of a system of CDE [3], provided the quantity γ = U01/(U00 − U11)
is independent of r.

To illustrate the effects of the partial waves (l /=0) in the resonance problems,
we propose the same schematic model, in which the potentials U00, U11 and U01
are assumed to be constant for r < a and to be zero for r > a.
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Then the solutions of these equations, in the second region r > a, can be
obtained in the following forms, which satisfy the asymptotic conditions (17) and
(18)

G0l =
√
πkr/2{ilJν(kr) + αl [iJ−ν(kr) + (−1)lJ−ν(kr)]} , (19)

G1l = i
l
√
πkr/2 βl(2/π) sin νπKν(κr) , (20)

where J±ν are the Bessel functions of the first kind, and Kν are the hyperbolic
Bessel functions [7].

In the first region (r < a) where the direct potential are constants and U01 = C,
the system (14) and (15) can be solved using the theorem on separation of CDE.
Then the solutions are given by

G0l = A1Jν(ω1r) + A2Jν(ω2r) , (21)

G1l = A2Jν(ω1r)− A1Jν(ω2r) , (22)

where A2 = −A1C/(k2 − U00 − ω22).
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Fig. 2. Resonance effects in the elastic scattering below the resonance threshold
for some values of the orbital angular momentum quantum number l ≤ 3, and for
different strengths of the coupling interaction U01 as indicated.
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TABLE 1. Disappearance of the resonance effects in the elastic cross-sections below
the inelastic threshold for l = 4 and 5 and for different values of the coupling
interaction U01.

l = 4 C
k0 20 40 60 80
0.2 0.67 · 10−16 0.67 · 10−16 0.67 · 10−16 0.67 · 10−16
0.4 0.50 · 10−16 0.90 · 10−16 0.24 · 10−16 0.39 · 10−16
0.6 0.86 · 10−15 0.20 · 10−13 0.36 · 10−14 0.98 · 10−16
0.8 0.21 · 10−13 0.25 · 10−11 0.98 · 10−12 0.12 · 10−12
1.0 0.90 · 10−12 0.15 · 10−9 0.49 · 10−10 0.67 · 10−11
1.2 0.25 · 10−10 0.48 · 10−8 0.11 · 10−8 0.15 · 10−9
1.4 0.39 · 10−9 0.90 · 10−7 0.15 · 10−7 0.21 · 10−8

l = 4 C
k0 100 120 140 160
0.2 0.67 · 10−16 0.67 · 10−16 0.67 · 10−16 0.67 · 10−16
0.4 0.89 · 10−16 0.17 · 10−16 0.28 · 10−16 0.37 · 10−16
0.6 0.13 · 10−13 0.76 · 10−14 0.18 · 10−14 0.27 · 10−15
0.8 0.18 · 10−11 0.18 · 10−11 0.62 · 10−12 0.19 · 10−12
1.0 0.11 · 10−9 0.90 · 10−10 0.32 · 10−10 0.10 · 10−10
1.2 0.38 · 10−8 0.20 · 10−8 0.77 · 10−9 0.24 · 10−9
1.4 0.82 · 10−7 0.27 · 10−7 0.10 · 10−7 0.33 · 10−8

l = 5 C
k0 20 40 60 80
0.2 0.67 · 10−16 0.67 · 10−16 0.67 · 10−16 0.67 · 10−16
0.4 0.49 · 10−16 0.49 · 10−16 0.49 · 10−16 0.49 · 10−16
0.6 0.36 · 10−15 0.36 · 10−16 0.39 · 10−15 0.35 · 10−15
0.8 0.14 · 10−15 0.19 · 10−15 0.10 · 10−14 0.26 · 10−16
1.0 0.54 · 10−16 0.67 · 10−15 0.73 · 10−13 0.49 · 10−14
1.2 0.17 · 10−14 0.32 · 10−13 0.52 · 10−11 0.25 · 10−12
1.4 0.27 · 10−13 0.83 · 10−12 0.23 · 10−9 0.66 · 10−11

l = 5 C
k0 100 120 140 160
0.2 0.67 · 10−16 0.67 · 10−16 0.67 · 10−16 0.67 · 10−16
0.4 0.49 · 10−16 0.49 · 10−16 0.49 · 10−16 0.49 · 10−16
0.6 0.36 · 10−15 0.36 · 10−15 0.33 · 10−15 0.35 · 10−15
0.8 0.83 · 10−16 0.19 · 10−15 0.45 · 10−16 0.27 · 10−16
1.0 0.69 · 10−15 0.80 · 10−15 0.37 · 10−13 0.49 · 10−14
1.2 0.38 · 10−13 0.44 · 10−13 0.17 · 10−11 0.25 · 10−12
1.4 0.11 · 10−11 0.13 · 10−11 0.40 · 10−10 0.70 · 10−11
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To obtain the parameters α1 and β1, we use the connection of these solutions
at r = a, which leads directly to the elastic partial cross-sections

Qell =
4π

k2
(2l + 1) |αl|2 . (23)

We plot in Fig. 2 the partial cross-sections as a function of energy in terms of
the coupling potential U01 = C. One can see that the resonance effects are more
pronounced for low values of l. Thus the curve for l = 0 passes through a resonance
around k = 0.3, for C = 1, while for l = 1, the partial elastic cross-section does
not reach the highest value until k = 0.8 for C = 7, and the partial cross-sections
for higher l require even stronger coupling for complete resonance effects. We have
assumed the same values as in the last paragraph for a = 1, U11 = −6.25, U00 = −1.
The excitation energy was chosen so that k2 = 2.25 − κ2, giving the undisplaced
level at k2 = 1.48. These effects are also responsible for values of the elastic cross-
sections below the conservation limit, and are clearly seen as well as the increased
shift and width as C increases. The maximum cross-section remains 4π(2l+ 1)/k2

until the shift is so large that the maximum is displaced to negative values of k2.

In Table 1, we give the prediction for the partial cross-sections for l = 4 and
5, where we see that the resonance effects disappear for all values of the coupling
potential. That shows that the investigation of the partial waves can be neglected
in the elastic collisions at energies below the inelastic threshold resonance effects,
where the resonance will be missed or at best, broadened. The contribution of these
partial waves are important in the inelastic collisions [5].

5. Resonance effects in slow electron collisions

We also consider whether the resonance effects discussed in the previous para-
graphs are likely to occur in atomic collisions. Certainly, in the two- and three-state
close-coupling approximations, such as the 1s - 2s and 1s - 2s - 2p below the ex-
citation threshold, sharp resonances arise. They correspond to the formation of
negative ions which are unstable towards auto-detachment. Thus, an electron may
attach to a hydrogen atom in the 2s state to form a negative ion but it is unstable.

It is well known that an interaction that falls off faster than r−2 will, in general,
support only a finite number of bound states. Therefore, at first sight, it would
seem that there could at most be a finite number of doubly-excited states of H−
based on singly-excited orbital of H of the total quantum number n. In fact, as was
first proved by Gailitis and Damburg [8], the situation is affected by the energy
degeneracy of the H atom states of different angular momentum associated with a
given n. The coupling between these states modifies the effective interaction acting
on an additional electron so that it falls as slowly as r−1 at large distance r. If the
degeneracy were exact, this would lead to an infinite series of doubly-excited states
associated with a given n, but only for certain values of the total orbital angular

momentum quantum number L. Thus, if E
(1)
nl is the energy of the lowest level of a

series associated with particular values of n and L, the energy of the higher levels
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are given by E
(1)
nl (α, α

2, α3, . . .), where α < 1. In fact, the degeneracy between the
s,p,d... levels of H for a given n is not exact because of the Lamb shift. It may be
shown that if ε is the actual energy difference between the nearly degenerate states,

the above considerations remain applicable provided the energy E
(s)
n of a particular

state below the corresponding ionization threshold satisfies

E(s)n >> (L + 1)∆ε/2 . (24)

In particular, in the three-state case, there exists an infinite number of res-
onances for n = 2 and L ≤ 2 where L is the total orbital angular momentum
quantum number, and the 2s – 2p coupling includes a term which falls off as r−2.
For example, for L = 0, we have asymptotically in the 2s and 2p channels

F2s = G2s/r , (25a)

F2p = G2p/r , (25b)

(
d2

dr2
− κ2

)
G2s =

6

r2
G2p , (26)

(
d2

dr2
− κ2 − 6

r2

)
G2p =

6

r2
G2s , (27)

where G2s,2p satisfy the condition

G2s, 2p ∼ β2s, 2p exp(−κr) (r →∞) . (28)

It will be seen that the coupling term falls off only as r−2. The equations may be
separated using the theorem on the separation [3] when the conditions, which are
imposed by this theorem, are satisfied, i.e., the quantity γ = U01/(U00−U11) = −1
is independent of r. The separated equations are now

(
d2

dr2
− κ2 + (±

√
37− 1)
r2

)
φ± = 0 , (29)

where G = T−1φ and T is defined in Ref. [3]. Then, for φ+, we have a repulsive
potential which does not give a bound state, while for φ−, the potential is attractive
and may yield a bound state which leads to the resonance effects we have discussed
earlier.

If we put

ν(ν + 1) = −(±√37− 1) , (30)
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then this apparently corresponds to four alternative values for ν , but the ambiguity
in the form ν(ν + 1) does not lead to anything new. We may thus take

ν1 = −1
2
+

√
5

4
+
√
37 , ν2 = −1

2
+ i

√√
37− 5

4
. (31)

To solve the system (29) for small κ, we may distinguish three ranges of r in which
different approximation can be made.

In the discrete region, we may neglect κ for values such that κr << 1, and the
coupling terms are ignored in (26), (27), but in (29) must be taken into account.
This means that, for r = r0,

φ1ν
φ′1ν
= c , (32)

where c is a constant independent of κ, but depending on the internal interactions
and φ′ = dφ/dr.
In the second region, we suppose that κ2 is negligible compared with ν(ν+1)/r2,

and the general solution is

φIIν = ar
ν+1 + br−ν . (33)

The constants a and b are determined by fitting the solutions at r = r0, and so
their ratio is independent of κ,

a

b
= −r−2ν−1 r0 + cν

r0 − c(ν + 1) . (34)

Finally, there is the outermost region in which κr ≈ 1, and the required solution of
this equation can now be expressed in terms of the Bessel functions,

φIIIν =
√
iκr {AJ(ν+1/2)(iκr) + BJ(−ν−1/2)(iκr)} . (35)

As this solution must have the asymptotic form (28), then

B = −i exp(iνπ) . (36)

When κ is small so that κr << 1, we may use the series expansions of the Bessel
functions [7]

Jn(x) ≈ xn

2nΓ(n + 1)
. (37)

Substitution in (35) and comparison with (33) gives

a

b
=
(κ
2

)2ν+1 π

(ν + 1
2
) cos νπ

1

[Γ(ν + 1/2)]2
. (38)
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This shows that

κ2ν+1 = constant .

When ν = −1/2 + iµ, this condition becomes

κ2iµ = constant .

This is satisfied by

2µ lnκ = 2sπ + 2µ lnκ0, s = 0, ±1, ±2, . . .

or

κ2 = κ20 exp(2sπ/µ) ,

showing that if κ2h2/(2m) is an allowed energy, then it is also

exp(2sπ/µ)κ20 h
2/(2m) .

This will be true provided κ20 is such that κ
2 is neither too small for Eq. (24) to

hold, nor too large for κr1 to be too large. In this case, ∆ε = 4 × 10−6 eV for
n = 2 and L = 0, and we have considered the progression of enegy levels below the
ionization threshold, which will be of the form

E(1, α, α2, α3, . . .)

where

α = exp(−2π/µ) ,

Since µ =
√√
37− 5/4 = 2.198, we have 1/α = 17.428 as is shown in Ref. [4].

6. Conclusions

We have applied the theorem on separation of coupled differential equations to
the resonace effects, with neglect of the effect of exchange between the incident
and atomic electrons. It has been shown how the coupled-channel equations, which
may arise in the elastic scattering when the electron energy is below the threshold
excitation, can be decoupled. We expect that our calculation is fairly realistic.

It is clear from the figures and tables that the behaviour of the cross-sections
is in qualitative agreement with the considerations expressed in the second section.
The elastic cross-section below the threshold shows resonances.

We have described the elastic collisions at energies below the inelastic threshold
in terms of the simple model. It is not difficult to extend this analysis to the
interaction of a discrete state with any number of continua. In the general case,
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in which collision processes occur through the formation of a complex of a finite
lifetime as an intermediate stage, we may write for the cross-section for the inelastic
process the formulae which were derived by Breit and Wigner [4].

In principle, the analysis can be extended to more complicated sets of coupled
equations, including electron exchange. In that case, the corresponding procedure
would be to determine the bound states that arise as eigenfunctions for the reduced
set of coupled equations that involve the closed channels only, the coupling with
the open channels being ignored. Example of such calculations are given in the
previous section.

We considered an electron incident on hydrogen ion in the ground state, where
L = 1 is the angular momentum quantum number of the motion of the electron
relative to the ion. The states which couple with this initial state must then also
use the rule for combination of angular momenta. When L = l = 0, the states
which couple may be written 2s, l = 0, 2p, l = 1, where l refers to the angular
momentum relative to the atom in the 2s- or 2p-state, respectively. In this case, the
treatment involves two equations associated with closed channels. The resonance
states obtained from these channels correspond to the doubly-excited series 2sns and
2pnp, respectively. Some information about the identification of any resonance state
in these terms are given in the last paragraph. When l = 1, the states which couple
are 2s, l = 1, 2p, l = 0, and 2p, l = 1, corresponding to the series 2snp, 2pns and
2pnd, respectively. 2pnp does not contribute, because such states are of even parity,
whereas the initial state is odd. In this case, there will be four coupled equations.
Resonance effects in the first-order phase shift will arise from the interaction with
states of the three series of states mentioned above. Investigations on these topics
are in progress.
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TEOREM O RAZDVAJANJU VEZANIH DIFERENCIJALNIH JEDNADŽBI,
REZONANTNI UČINCI I SVOJSTVA OKO PRAGA

Cilj je ovog rada pokazati važnost teorema o razdvajanju vezanih diferencijalnih
jednadžbi za opis elastičnog raspršenja elektrona kada je energija elektrona ispod
praga za uzbudu iz osnovnog stanja 0 u stanje 1. Primijenili smo aproksimativni
model radi proučavanja rezonantnih učinaka koji se opažaju u raspršenju elektron
– vodik. Razmatraju se svojstva raznih udarnih presjeka u blizini praga nove vrste
raspršenja u kojemu elektron ima bilo koji impulsni moment i ispituju se učinci
promjene centrifugalnog potencijala u slučaju približenja bliskog vezanja 1s-2s-2p.
Zaključujemo raspravom o svojstvima oko praga i njihovom odnosu s rezonantnim
učincima.
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