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Several experiments with high-energy radioactive nuclear beams have attracted
a special interest to the case of 11Li in which two neutrons form a loosely bound
“halo” surrounding a 9Li core. Different sophisticated three-body calculations (HH,
COSMA, CSF) were employed to explore its ground-state structural properties. Due
to the lack of experimental information about 9Li – n potential and difficulty to
incorporate the Pauli principle between the valence and core nucleons, even sophis-
ticated three-body calculations are not completely reliable. We show that a simple
variational technique can reproduce the physical structure of 11Li and the results
compare well to the other three-body calculations.
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1. Introduction

Recent experiments with high-energy radioactive nuclear beams have opened
up new and exciting possibilities in the physics of light radioactive nuclei. Nuclei
like 11Li, 11Be, 14Be near the neutron drip line exhibit a “halo” structure for a few
outer neutrons. Perhaps the most striking among these is the nucleus 11Li for which
experimental results [1] indicate that two neutrons form a loosely bound “halo” sur-
rounding a 9Li core. Different experimental facts, like large interaction cross section,
large matter radius and small two-neutron separation energy [1,2] support the idea
of a halo structure. In the dominant reaction channel, 11Li dissociates into 9Li and
two neutrons, and both neutrons and the fragment have sharply forward-peaked
angular distributions [3–7] which correspond to a large spatial distribution of va-
lence neutrons. The halo structure is further confirmed in momentum distribution
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experiments which show a narrow width for the transverse momentum distribution,
which, according to the uncertainty priciple, corresponds to a large spatial distri-
bution of valence neutrons. This halo structure causes a low binding energy (BE)
of the valence neutrons. Thus 11Li is expected to have a loose three-body structure
and no two-body subsystem (dineutron or 10Li) is bound.

Experiments show that the ground state of 11Li is bound by an energy (295±35)
keV. Several three-body calculations, using different types of wave-function expan-
sions, have been reported in the literature. Among these are hyperspherical harmon-
ics (HH) method, coordinate-space Faddeev (CSF) approach, cluster–orbital-shell
model (COSM) calculation, etc. In the HH expansion method [8,9], one intro-
duces the hyperspherical variables in terms of the relative Jacobi coordinates of
the three-body system, and the relative wave function is expanded in the complete
set of hyperspherical harmonics spanning the hyper-angular space. The Schrödinger
equation reduces to a system of coupled differential equations. For a practical calcu-
lation, one has to truncate the expansion basis and then the question of convergence
looms large, as the rate of convergence of the HH expansion is notoriously slow. In
the CSF approach [10], the three-body wave function ψ is decomposed into three
components, corresponding to three partitions:

ψ = ψ12 + ψc1 + ψc2 , (1)

where 1 and 2 refer the two valence neutrons and c represents the core. Expressing
each component of the wave function in terms of the Jacobi coordinates, one gets a
set of two-dimensional coupled differential equations, which are solved numerically.
The cluster-orbital-shell model [11] is an extended version of the conventional shell
model for the valence neutrons coupled to a core. Translationally invariant coordi-
nates between the core and the valence neutrons are introduced, which eliminate
the spurious centre-of-mass excitations of the valence neutrons. This also allows the
potential between the core and valence neutrons to be different from the potential
between nucleons within the core. However, the convergence of the binding energy
is slow.

In addition to the fact that all these sophisticated three-body calculations are
quite difficult, there are two serious problems with all three-body calculations:

(a) 9Li – n potential is not exactly known - there are no direct experimetal
informations about this interaction.

(b) The Pauli principle between the valence and the core nucleous is difficult to
incorporate [12]. This is either treated approximately or taken indirectly introduc-
ing a “Pauli repulsive core” in the core – n potential.

Unless these two points are resolved beyond reasonable doubts, very sophisti-
cated three-body calculations cannot produce the desired credibility, and a simple
approach is worth exploring. In this situation, it is desirable to have as much
physical insight as possible, without devoting too much effort towards solving the
three-body equations precisely. In this communication, we apply a simple varia-
tional technique to explore the ground state structure of 11Li using the known n
– n potential and a sum of Gaussians for the 9Li – n potential, whose parameters
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are adjusted to reproduce the experimental two-neutron separation energy of 11Li
and the fact that 10Li is unbound by about 0.5 MeV. Due to a weaker spin-orbit
interaction in neutron rich nuclei [12], we disregard this interaction. Motivation
behind the present work is to get a clear and transparent physical picture ob-
tained analytically with very little numerical effort. We find that the results for
the ground state compare quite well to those obtained by sophisticated three-body
calculations, including elaborate variational calculations using several variational
parameters [12]. We have been able to obtain the binding energy, complete internal
structure observables, and density and momentum distributions of the ground state
of 11Li.

In Sect. 2, we describe the variational calculation for the ground state of 11Li.
In Sect. 3, comparison with other theoretical calculation and some remarks are
presented.

2. Variational approach for the ground state of 11Li

We consider 11Li as a three-body system consisting of a 9Li core (labelled 3)
and two loosely bound neutrons (labelled 1 and 2) (see Fig. 1). The Hamiltonian
of the system is

H = − h̄2

2m1
∇2r1 −

h̄2

2m2
∇2r2 −

h̄2

2m3
∇2r3 + Vnn(r12) + Vcn(r23) + Vcn(r31) , (2)

where mi and ~ri are the mass and position vector of the i
th particle (i = 1, 2, 3).

The n – n and the core – n interaction potentials are denoted by Vnn and Vcn, re-
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Fig. 1. Choice of the Jacobi coordinates in terms of ~rnn and ~rnc.

spectively. In order to separate the centre-of-mass motion, we define Jacobi (~ξ1, ~ξ2)

and centre mass (~R) coordinates through (note that m1 = m2)

~ξ1 =

√
m1m2

(m1 +m2)m
(~r2 − ~r1) =

√
m1

2m
(~r2 − ~r1) , (3)
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~ξ2 =

√
m3(m1 +m2)

mM

(
~r3 − m1~r1 +m2~r2

m1 +m2

)
=

√
2m3m1
mM

(
~r3 − 1

2
(~r1 + ~r2)

)
,

(4)

~R =
m1~r1 +m2~r2 +m3~r3

M
(5)

where

m =
m1m2 +m2m3 +m3m1

m1 +m2 +m3
=
m1(m1 + 2m3)

2m1 +m3
(6)

and

M = m1 +m2 +m3 = 2m1 +m3 . (7)

In terms of these variables, the centre-of-mass motion is separated and the
Schrödinger equation for the relative motion is

− h̄2

2m

(∇2ξ1 +∇2ξ2)ψ + V (~ξ1, ~ξ2)ψ = Eψ , (8)

where V (~ξ1, ~ξ2) is the sum of three pairwise interactions, expressed in terms of the

relative vectors ~ξ1 and ~ξ2. The n – n interaction, Vnn, is chosen as a standard singlet
n – n interaction given by

Vnn(r) = V10 e
−µ1r2 , (9)

with V10 = −31 MeV and µ1 = 0.3086 fm−2, which fits the two-nucleon singlet
scattering data to yield, respectively, the effective range and scattering length

r0s = 2.76 fm and as = 23.72 fm . (10)

As mentioned in the Introduction, the core – n interaction is not accurately known
and we choose a sum of two Gaussians

Vcn(r) = V20 e
−µ2r2 + Vr0 e−µrr

2

, (11)

with µ2 = 0.153786 fm
−2, and V20 is varied to reproduce the two-neutron separation

energy. A short range (µr = 0.6 fm) and a strongly repulsive (Vr0 = 65 MeV) term
is included in Vcn to simulate the Pauli exclusion principle between the valence
neutrons at the core nucleons. In choosing the parameters µ2 and Vr0, we make
sure that the two-body 9Li – n system is unbound by about 0.5 MeV. In order to
study the importance of the Pauli principle in Vcn, we here repeat our calculation
without the repulsive term in Eq. (11) and once again adjust V20 to reproduce the
two-neutron separation energy, and demanding that the 9Li – n system is unbound
by 0.5 MeV.

The trial wave function for the ground state is chosen as

ψ0(~ξ1, ~ξ2) = N0 e
−α0(ξ21+ξ22) , (12)
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where α0 is a variational parameter and N0 is the normalization constant given by

N0 =

√
2α0
π

. (13)

Calculation of the expectation value of the Hamiltonian of Eq. (8) is straightforward
and can be done analytically. The result is

E0(α0) = 〈ψ0|H |ψ0〉 = 3h̄
2α0
m

+ V10

[
1 +

µ1
α0

m1 + 2m3
2m1 +m3

]−1/2

+16V20

[
4 +
2µ2
α0

(m1 + 2m3)(m1 +m3)

m3(2m1 +m3)

]−1/2

+16Vr0

[
4 +
2µr
α0

(m1 + 2m3)(m1 +m3)

m3(2m1 +m3)

]−1/2
. (14)

Employing the Rayleigh-Ritz variational principle, the variational parameter α0 is
determined by the condition.

∂E0

∂α0
= 0 . (15)

The differentiation with respect to α0 is done analytically and the resulting equation
is solved numerically by the bisection method [13] followed by the Newton-Raphson
method [13] to obtain α0. This is then used in Eq. (14) to obtain the ground state
energy E0 = E0(α0). We next repeat the calculation varying the strength of the
core – n potential (V20), to get the binding energy (BE) of the ground state of

11Li
(as a 9Li-n-n system) at about 0.3 MeV, in agreement with the currently accepted
experimental value of (295± 35) keV [14]. Our calculation yields α0 = 0.055 fm−2
corresponding to a BE of 0.297 MeV for V20 = −23.75 MeV, Vr0 = 65 MeV and
µr = 0.6 fm

−2. A two-body calculation with these parameters in Vcn shows that
10Li is unbound by 0.5 MeV in agreement with the observed result. This fact implies
that the interactions between the two valence neutrons in 11Li are responsible for
its stability.

We have next calculated the m.s. halo radius defined as

(Rhalo)
2
gs = 〈

1

2
(R213 + r

2
23〉gs = 〈(b2ξ22 +

a2

4
ξ21)〉gs =

3

4α0
(
a2

4
+ b2) , (16)

where a =
√
2m/m1 and b =

√
mM/(2m3m1). The numerical value of (Rhalo)gs

turns out to be 5.11 fm. Then the m.s. matter radius of 11Li is given by

(Rrms,11Li)
2 =

9

11
(Rrms,9Li)

2 +
2

11
(Rhalo)

2
gs . (17)
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Taking Rrms,9Li = 2.5 fm, we get Rrms,11Li = 3.14 fm. We also calculate the average
nn separation as

〈r2nn〉gs = 〈4a2ξ21〉gs =
3a2

α0
. (18)

Putting in the values of a2 and α0, we get 〈r2nn〉1/2gs = 6.86 fm.
To check the effect of the non-inclusion of the Pauli principle between the valence

neutrons and the nucleons in the core, we repeated our calculation by switching
off the repulsive part in Vcn and readjusting the parameters of the potential. The
constraints imposed are the same as before, namely: (1) the two-neutron separation
energy of 11Li at about 0.3 MeV (2) 10Li is unbound by about 0.5 MeV. The results
together with our previous result including the repulsive part in Vcn are shown in
Tables 1 and 2. One can immediately notice from Table 2 that without the repulsive
part, the three-body system is too compact and all radii turn out to be too small
compared to the experimental values, although the two-neutron separation energy
is reproduced. This shows that it is indeed the Pauli principle which gives rise to the
halo structure with the neutron cloud well outside the core for such neutron-rich
nuclei. All calculated quantities, including the repulsive part in Vcn agree nicely
with the available experimental data and also with other three-body calculations
[12].

TABLE 1. Results for the ground state of 11Li with (Model I) and without (Model
II) repulsive part in Vcn (V10 = −31 MeV, µ1 = 0.3086 fm−2, µ2 = 0.153786 fm−2).

Calculation V20 Vr µr α0 E
MeV MeV fm−2 fm−2 MeV

Model I –23.75 65.0 0.6 0.055 –0.299
Model II –10.8 – – 0.109 –0.298

TABLE 2. Comparison of the structure properties of 11Li ground state in different
three-body models including our present calculation (Model I and Model II).

Properties Model I Model II COSMA2 CSF(Q9) HH Exptl.
BE (keV) 297 298 – 296 – –

Rhalo (fm) 5.11 3.849 61 5.47 5.02 5.1
+0.6
–0.9

Rrms (fm) 3.14 2.794 3.2 3.14 3.11 3.10± 0.17
〈rnn〉 (fm) 6.86 4.87 6.71 6.7 – –
〈rnc〉 (fm) 3.79 2.69 5.1 4.6 – –

To get a physical picture of the structure of 11Li, we present in Fig. 2. the
halo density distribution |ψ0(ξ1, ξ2)|2 for the ground state as a three-dimensional
plot against rnn (= 2aξ1) and rnc (= 2bξ2). It is seen that the halo density has
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Fig. 2. 3-D plot of the halo density distribution (in arbitrary units) of the ground
state of 11Li, |ψ0(ξ1, ξ2)|2 as a function of rnn and rnc.
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Fig. 3. Single-particle radial densities of 11Li, provided by the core nucleons and
valence neutrons. Results of other calculations as read from Fig. 1 of Ref. [15].
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a maximum at rnn ' 5.57 fm and rnc ' 3.08 fm. This corresponds to a cigar-
shaped structure with the two valence neutrons on either side of the core. The
density decreases rather slowly as either of these two separations increases. The
structureless peak is similar to the one obtained for a “shallow potential” case (Z2)
by the CSF method [12]. In Fig. 3., we plot the single halo neutron density as
a function of r, which is the separation of the halo neutron from the centre-of-
mass of the three-body system. This is obtained by integrating the single-neutron
probability density over all other variables for a fixed value of r. Our result (the
continuous curve) shows a long tail of tenuous neutron matter, extending well be-
yond the r.m.s. radius of 11Li. In the same figure, we also include the results of
other calculations (as read off from Fig. 1 of Ref. [15]) for comparison. We notice
that our result agrees fairly well with CSF, HH and COSMA results in the outer
region (3 fm ≤ r ≤ 8 fm). This was expected, as mentioned in Ref. [15], since in
a three-body model with a defined core and specified total nuclear r.m.s. radius,
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Fig. 4. Total (the core plus valence neutron) one-particle density distribution of
11Li. Results of other calculations have been read off from Fig. 11 of Ref. [12].
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the valence neutron density is fairly constrained. However, it is important to notice
that the one-particle densities by both HH and COSMA [15] have the largest value
at the origin, whereas CSF density decreases at small values of r. Our calculation
also shows a similar trend, although more pronounced. Since the valence neutron
is not expected to penetrate the core due to the Pauli principle, a decrease of
single-neutron density within the core is intuitively expected, in agreement with
our result. In Fig. 4, we plot the total (the core plus valence neutron) one-particle
density as a function of r. In the same figure, we also include the results of other
calculations (as read off from Fig. 11 of Ref. [12]) for comparison. Our results are
in excellent agreement with the Riken fit and CSF calculation. Considering the
simplicity of our calculation, this agreement is remarkable.

The transverse momentum distribution is given by

dN

dkcx
=

∫
dpcydpczd

3pnn|φ(~k1, ~k2)|2, (19)

where φ(~k1, ~k2) is the Fourier transform of ψ(~ξ1, ~ξ2). The momenta of the two

neutrons and the core in the centre-of-mass frame are ~k1, ~k2 and ~kc, respectively,

such that ~k1+ ~k2 + ~kc = 0. The relative momentum of the two neutrons (~pnn) and
that of the core relative to the centre-of-mass of the two neutrons (~pc) are given by

~pnn =
1√
2
(~k2 − ~k1) , ~pnn =

1√
2
(~k2 − ~k1) . (20)

The Fourier transform of ψ(~ξ1, ~ξ2) is

φ(~k1, ~k2) =
1

(2π)3

∫ ∫
ψ0(~ξ1, ~ξ2)e

−i~k1·~ξ1e−i~k2·~ξ2d3ξ1d3ξ2 =
1

π3
e−(k

2
1+k

2
2)/(4α0) .

(21)
Substituing this in Eq. (19), we have

dN

dkcx
=
1

π

√
2α0
π
e−p

2
cx/(2α0) , (22)

where pcx = h̄kcx. In Fig. 5, we plot dN/dkcx against kcx. In the same figure,
experimental values from Ref. [12] are also shown. We see that the agreement is
good. As already mentioned, the narrow momentum distribution corresponds to an
extended spatial distribution, once again pointing to the halo structure of 11Li.

3. Summary and conclusions

We have investigated the ground state of the two-neutron halo nucleus (11Li
treated as a three-body system consisting of 9Li core and two valence neutrons)
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by a simple-minded variational method with a simple analytic trial wave function.
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Fig. 5. The 9Li transverse momentum distributions. The experimental data and
the COSMA (II) plot are taken from Fig. 8 of Ref. [12].

The n – n interaction has been taken as a standard one-term Gaussian, while the
form of the 9Li – n potential was adjusted to reproduce the two-neutron separation
energy (Snn) and the r.m.s. matter radius (Rrms(

11Li)), making sure that the 9Li-n
system is unbound by about 0.5 MeV. It was found that a repulsive core in the
9Li-n potential was necessary; it reflects the effect of the Pauli principle between the
valence neutrons and the core nucleons, for which no theoretical provision is made
in the strictly three-body model. We find that not only S2n and Rrms(

11Li) are
reproduced well, but many other observables like the neutron halo radius (Rhalo),
〈rnc〉, 〈rnn〉, halo and single particle density distribution, transverse momentum
distribution, etc., agree well with the experimental results and with the results
of other sophisticated three-body calculations. On the other hand, appreciable
variations of the computed observables by different three-body methods are found
(Table 2), reflecting uncertainties inherent in these theoretical methods.

The main interest of the present work is that it uses a single variational parame-
ter. Although the ground-state variational treatment is rather simple, we find that
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the quality of agreement of the ground-state results calculated using the simple
trial wave function with experimental results is comparable to that by very sophis-
ticated three-body calculations. In spite of the simplicity, our trial wave function
gives many fairly precise informations about the ground state. It is worth noting
that while other few-body approaches face many problems regarding the conver-
gence of energy, we are able to reproduce the ground state by a simple analytic
calculation, within the framework of our model. At the same time, we get a lot of
physical information and insight with much less calculational effort and by using
only one variational parameter.
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JEDNOSTAVAN VARIJACIJSKI RAČUN TRI TIJELA ZA 11Li

Nedavna mjerenja s visoko-energijskim radioaktivnim nuklearnim snopovima
potakla su zanimanje za 11Li u kojemu dva slabo vezana neutrona čine aureolu oko
sredice 9Li. Razne zamršene račune tri tijela (HH, COSMA, CSF) rabi više autora
za istraživanje strukture 11Li. Zbog nedostatka eksperimentalnih podataka o po-
tencijalu 9Li – n i teškoća u primjeni Paulijevog principa medu neutronima sredice i
valentnih neutrona, čak su i ti računi tri tijela nepouzdani. Ovdje pokazujemo kako
jednostavan varijacijski pristup može opisati fizička svojstva 11Li, a ishodi računa
posve se dobro usporeduju s drugim računima tri tijela.
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