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DIRAC EQUATION WITH FRACTIONAL DERIVATIVES OF ORDER 2/3
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In conventional spacetime, a Dirac-like equation with fractional derivatives of or-
der 2/3 is introduced. The corresponding γ matrix algebra relates to generalized
Clifford algebras: finite representations exist with smallest dimension N = 9.
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1. Introduction

This is a short paper which introduces a Dirac-like equation with fractional
derivatives of the order 2/3. Fractional calculus [1–3] is briefly reviewed in Sect. 2
and the aforementioned equation is presented in Sect. 3, as a cube root of the
Klein-Gordon equation [4]. The resulting γ matrix algebra (Sect. 4) is of the cu-
bic polynomial Clifford type [5,6], which relates to the corresponding generalized
Clifford algebras [7,8].

The notation is rather standard. In particular, the summation convention is
applied to repeated up and down labels, and units are such that h̄ = c = 1.
All Greek indices run through the values 0, 1, 2, 3, while the Latin index ` takes
on the values 1, 2, 3; other labels are defined as needed. An attempt is made at
distinguishing superscripts from powers: for instance, (m)2 and (/Q)3 are powers,
while x3 indicates a specific variable with superscript 3. Non-integral powers of
positive numerical quantities are conveniently taken in their real positive branch,
and pseudoeuclidean squares of four-vectors are identified like this: P[2]. The curly
bracket notation is used for ordered sets: for example, {xλ} indicates four objects
in the order 0 – 3.
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2. Review of fractional calculus

Fractional calculus can be introduced in several different ways [1,2]. One of the
most evident formulations is based on the fundamental definition (Liouville)

DfG(u) =
1

[−(f + 1)]!

u∫

−∞
(u− ξ)−(f+1)G(ξ) dξ (for f < 0), (1)

and on the auxiliary one

DfG(u) = DF [D(f−F )G(u)] (for f ≥ 0), (2)

where F is the smallest positive integer exceeding f , and DF is an ordinary differ-
entiation of the F -th order with respect to the variable u.

The linear operation Df is called fractional differentiation1 of order f relative to
the variable u (or, especially for negative f , fractional integration of order f̄ = −f).
Here, f , u and ξ are all real (but generalizations to the complex domain are pos-
sible), and the function G(u) may be real or complex valued. For functions G(u)
which are well-behaved and strongly vanishing (along with their ordinary deriva-
tives of all orders) at −∞, the indicated fractional derivatives exist and have some
interesting properties [1]:

(i) if f is a non-negative integer, DfG(u) reduces to the ordinary derivative of
order f relative to the variable u [including D0G(u) = G(u) for the zeroth order
derivative];

(ii) if f̄ is a positive integer, DfG(u) reduces to an ordinary f̄-fold integration of
the function G;

(iii) the law of exponents Df2 [Df1G(u)] = Df1 [Df2G(u)] = D(f1+f2)G(u) is valid
for all (real) values of f1 and f2.

Partial fractional derivatives may be introduced as a straightforward general-
ization of the outlined formalism. For instance, if x = {xλ} are real spacetime
variables and H = H(x) is a function of them, the derivative DfµH(x) indicates
a differentiation of order f with respect to the variable xµ, treating the remain-
ing variables as “spectators”. Under suitable assumptions for H(x), properties like
those in (i)–(iii) can be established for differentiations relative to each specific vari-
able. Furthermore, for mixed derivatives [2]

Df2ν [D
f1
µ H(x)] = D

f1
µ [D

f2
ν H(x)] . (3)

In concluding this section, it is important to re-iterate that some of the listed
properties are valid under sufficiently restrictive conditions for the functions in-
volved: if these conditions are relaxed, the same properties may not be appli-
cable with generality (e.g., the law of exponents). For specific details, see, for
instance Refs. [1,3].

1Note that the various existing formulations of fractional calculus are not necessarily all equiv-
alent, as they may lead to slightly different types of fractional differentiations [1].
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A remark about notation. As previously defined, let Df indicate the frac-
tional differentiation of order f relative to the variable u. Some authors introduce
the symbol [1]:

G (f)(u) = DfG(u) . (4)

If changes of variables are contemplated, it is important to keep in mind the in-
tended meanings of these two types of notation. For example, DfG(−u) stands for
DfG(u), with G(u) = G(−u). On the other hand, G (f)(−u) implies that DfG(u) is
calculated first, and then u → −u. The analogy with the notations employed for
ordinary derivatives is evident.

3. Dirac equation

In a frame of reference X of real spacetime coordinates x = {xλ} and pseu-
doeuclidean metric gµν = g

µν = diag (+1,−1,−1,−1), the massive Dirac equation
may be written as follows [4]

iΓα∂αΦ(x) = mΦ(x) , m > 0 . (5)

Here, Φ(x) is a complex four-spinor and the 4 × 4 Dirac matrices Γ λ (in a fixed
chosen representation) obey the usual rules

Γ µΓ ν + Γ νΓ µ = 2gµνI , (Γ µ)† = Γ 0Γ µΓ 0 , (6)

where I is the 4× 4 identity matrix, and ∂µ = D1µ in the notation of the previous
section.

With Pµ = i∂µ and with the squared four-momentum operator defined as

P[2] ≡ PαgαβPβ = −∂αgαβ∂β , (7)

it is well known that the differential operator at the left-hand side of Eq. (5)

/P = iΓ α∂α (8)

satisfies

(/P)
2 ≡ /P/P = P[2] , (9)

on well-behaved spinorial functions2. In other words, /P is a “square root” of P[2]

and this is a crucial issue in the Dirac theory: all (well-behaved) solutions Φ(x) of
Eq. (5) are eigenstates of P[2] corresponding to the eigenvalue (m)2.

2Sufficient condition: the continuity of all second partial derivatives of each spinorial
component.
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It is interesting to examine whether meaningful modifications of the Dirac equa-
tion exist, in terms of fractional derivatives. Specifically, this paper considers the
case

− γαD2/3α Ψ(x) = (m)2/3Ψ(x) , (10)

where the following condition is imposed:

(/Q)3 ≡ /Q/Q/Q = P[2] , with /Q = −γαD2/3α , (11)

to be operated on sufficiently well-behaved spinorial functions (i.e., as to allow
the validity of the relevant properties outlined in Sect. 2). Here, the (complex)
matrices γλ are N × N and Ψ(x) is a complex N -spinor (N to be determined).
With Eq. (11) enforced, the fractional differential operator /Q is a “cube root” of
P[2] and all (well-behaved) solutions Ψ(x) of Eq. (10) are eigenstates of P[2] with
eigenvalue (m)2.

In terms of ordinary calculus, Eq. (10) is an integro-differential equation, but
the language and notation of fractional calculus appear to be more convenient and
suggestive in the present context. It is also pointed out that the terms “spinor” and
“spinorial”, as used in relationship to Eq. (10), are meant to refer to the column
structure of Ψ(x), not to the validity of conventional spinorial transformations
under changes of coordinates. As a matter of fact, the transformation properties of
these generalized spinors Ψ(x) are yet to be determined.

4. The γ matrices

An examination of Eq. (11), together with the results of Sect. 2, shows that
the matrices γ = {γλ} should satisfy

[γµγνγρ]+ = e
µνρI , (12)

where I is now the N×N identity matrix. Here, the bracket denotes symmetrization
over the indices

[γµγνγρ]+ = (13)

1

3!
(γµγνγρ + γµγργν + γνγµγρ + γνγργµ + γργµγν + γργνγµ) ,

and the symbol eµνρ is so defined

eµνρ = 0 unless µ = ν = ρ , (14)

e000 = 1 = − e``` . (15)

A slight simplification is obtained by setting γσ = gσαγ
α which gives

[γµγνγρ]+ = δµνρ I , (16)
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where δµνρ is the Kronecker symbol.

Equation (16) and similar ones have been approached in the context of three
main related topics: linearization of polynomials [5], polynomial Clifford algebras
[6], and generalized Clifford algebras [7,8]. The author is grateful to Dr. Antonio
Lopez Almorox (Department of Mathematics, University of Salamanca, Salamanca,
Spain) for pointing out these references and many others, and for useful discussions
and explanations. It is known that Eq. (16) can be solved, and it appears [5] that
N = 9 is the smallest dimension.

5. Conclusions

Future papers will examine the algebraic aspects [6,5,8] of Eq. (16) in more
detail, and attempt to find simple solutions for the generalized spinors of Eq. (10).
It is hoped that appropriate meanings and interpretations will follow, if the subject
is deemed to have sufficient interest and validity (e.g., in the context of mean field
theory or similar). In the meantime, it is observed that fractional calculus is linked
to fractal theory [9], and it is the author’s speculation that it might also relate to
dimensional regularization [10].
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DIRACOVA JEDNADŽBA S RAZLOMČANIM DERIVACIJAMA REDA 2/3

Uvodi se Diracova jednadžba s razlomčanim derivacijama reda 2/3 u konvencijskom
prostoru. Odgovarajuća γ-matrična algebra je srodna poopćenim Cliffordovim al-
gebrama: postoje reprezentacije dimenzije N = 9.
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