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We critically review the ΛΛ dynamics by examining several ΛΛ and Λα phenomeno-
logical potentials in the study of the bound state properties of 6ΛΛHe, as a three-body
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1. Introduction

The study of the structure of light exotic hypernuclei have become an area
of particular interest since the discovery of this species in the early sixties. Im-
portant members of this new species are the nuclei 6

ΛΛHe,
10
ΛΛBe and

13
ΛΛB [1–4].

Discovery of these doubly Λ-hypernuclei opened a new avenue to extract important
informations about the ΛΛ interaction. This enhances the range of ones imagina-
tion on the possible existence of multistrange hypernuclei. In the early stages, the
emulsion experiments provided a source of information on hypernuclei, which was
limitted to binding energies of Λ-particle in the light hypernuclei and the decay
rates (lifetimes) [2]. The binding energy data provided physicists some qualitative
informations about the Λ-nucleon (ΛN) interaction and single particle potential
strength for Λ-particle in hypernuclei [5]. The hyperon – nucleon scattering ex-
periments have also been performed, but these are still in the primary stages and
do not provide detailed phase shifts to construct reliably the potential. Some ΛN
and ΣN total cross-sections and very few angular distributions at low energies have
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been measured [6–11], but are not sufficient to allow the phase shift analysis. Nev-
ertheless, the bound state properties of single and double Λ-hypernucleus can give
valuable indirect information about ΛN and ΛΛ interactions. One can for example
take phenomenological forms of ΛN and ΛΛ interactions and see if they reproduce
the observables of the hypernuclei. Alternatively, one can adjust the parameters of
the empirical potential to reproduce the bound state properties and thus predict
the effective ΛN and ΛΛ interactions. Earlier attempts in this direction [12–15]
used variational and approximate few-body calculations, treating the hypernucleus
as a few-body system. In the present work, we review the αΛ and ΛΛ interactions
by studying the general properties of 6

ΛΛHe treated as a three-body system. The
6
ΛΛHe hypernucleus consisting of two protons, two neutrons and two Λ-hyperons is
considered to have a (0s)6 type configuration. Thus, it may constitute the lightest
closed shell of the p, n, Λ system with a complete analogy to 4He in the p, n sys-
tem. Here we consider the internal structure, stability and compactness of the 6

ΛΛHe
nucleus. The observed separation energy of a Λ-particle in 6

ΛΛHe is 7.6 MeV [16],
which is evidently smaller than that of a nucleon (≈ 20 MeV) in 4He. Certainly the
6
ΛΛHe nucleus falls behind the α-particle in energetic stabilty. No ΛΛ bound state
has been reported.

We employ the hyperspherical harmonics expansion (HHE) method to solve
such a three-body system. This method is a powerful tool for the ab initio solution
of the few-body Schrödinger equation for a given set of interaction potentials among
the constituent particles. This method has been used for bound states in atomic
[17–34], nuclear [35–52] and particle physics [53–55]. Attempts have been made to
use it in scattering problems as well [56]. In this method, the wave function is ex-
panded in a complete set of hyperspherical harmonics (HH), which, for a three-body
system, are the six-dimensional analog of the angular part of eigenfunctions of the
3-dimensional Laplacian operator. The resulting Schrödinger equation is a set of
coupled differential equations which can be solved numerically by the renormalized
Numerov method (RNM) [57–58] or the hyperspherical adiabatic approximation
(HHA) [61]. The HHE method is essentially an exact one and more reliable than
other methods. It involves no approximation except for an possible truncation of
the expansion basis. By gradually expanding the expansion basis and checking the
rate of convergence, any desired precision in the binding energy can, in principle,
be achieved. However, the number of coupled differential equations and, there-
fore, the complexity in the numerical solution increases rapidly as the expansion
basis is increased by including larger hyper-angular-momentum quantum number.
Computer limitations set an ultimate limit to the attainable precision. Thus, in
this approach, the attainment of desired convergence in physical observables are of
great importance.

In the present calculation, we achieved a convergence of the binding energy to
within 0.07%. In addition to the two-Λ separation energy which is defined as

BΛΛ(
A
ΛΛZ) =M(

A−2Z) + 2MΛ −M( AΛΛZ), (1)

we have also studied the size, density distribution and correlation among the 4He
(core) and the valence Λ-hyperons.
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This paper is organized as follows: In Sect. 2, we review the HHE method for a
three-body system consisting of non-identical particles. Results of the calculation
and discussion are presented in Sect. 3. Finally, in Sect. 4 we draw our conclusions.

2. Hyperspherical harmonics expansion method

We label the 4He-core as particle ‘1’ and the two valence Λ-particles as par-
ticles ‘2’ and ‘3’ (see Fig. 1.). For pairwise interactions, we can treat any
one of the three particles as the spectator, remaining two being the interact-
ing pair. Thus, there are three possible partitions labelled ‘i’ (i=1, 2, 3). In
.

2

1

~y1(ly1)

3~x1(lx1)

Fig. 1. Choice of Jacobi coordinates for the partition ’1’.

the partition ‘i’, particle numbered ‘i’ is the spectator and particles numbered ‘j’
and ‘k’ form the interacting pair (i, j, k = 1, 2, 3, cyclic). For a given partition ‘i’, the
Jacobi coordinates (which are proportional to the relative separation between the
particles of the interacting pair and the relative separation between the spectator
and the centre of mass of the interacting pair respectively) are defined as

~xi =

[
mjmkM

mi(mj +mk)2

] 1
4

(~rj − ~rk)

~yi =

[
mi(mj +mk)

2

mjmkM

] 1
4
(
~ri − mj~rj +mk~rk

mj +mk

)
~R =

1

M
(mi~ri +mj~rj +mk~rk)

(2)

(i, j, k=1, 2, 3 cyclic) where mi, ~ri are the mass and position of the i
th particle and

M = mi+mj+mk is the total mass and ~R is the centre of mass of the system. The
sign of ~xi is fixed by the condition that ‘i

′, ‘j′, ‘k′ form a cyclic permutation of (1,
2, 3). In the transformation (2), the six dimensional volume element is conserved
(i.e. the Jacobian is unity) and the centre-of-mass motion is automatically sepa-
rated. The relative motion of the three-body system is described by the Schrödinger
equation

[
− h̄

2

2µ
(∇2xi +∇2yi) + Vjk(~xi) + Vki(~xi, ~yi) + Vij(~xi, ~yi)−E

]
Ψ(~xi, ~yi) = 0 (3)
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where µ = (mimjmk/M)
1/2 is an effective mass parameter and Vij is the interac-

tion potential between ith and jth particles. We next introduce the hyperspherical
variables defined by [52]

xi = ρ cos φi ,
yi = ρ sinφi ,

(4)

where ρ =
√
x2i + y

2
i is the global length (also called the hyper-radius), which

is invariant under three-dimensional rotations and permutations of the particle
indices. Thus, ρ is the same for all three partitions. The five other hyperspherical
variables include the hyperspherical angle φi = tan

−1(yi/xi) and the polar angles
(θxi , φxi) and ( θyi , φyi) giving orientations of ~xi and ~yi, respectively. These are
collectively denoted by

Ωi ≡ {φi, θxi , φxi , θyi , φyi} (5)

and are called the ”hyperangles”. The six-dimensional volume element is given by

dV6 = ρ
5 dρ cos2 φi sin

2 φi dφi dΩxi dΩyi , (6)

where
dΩxi = sin θxi dθxi dφxi ,
dΩyi = sin θyi dθyi dφyi .

(7)

In terms of the hyperspherical variables, the Schrödinger equation becomes[
− h̄

2

2µ

{
1

ρ5
∂

∂ρ
(ρ5
∂

∂ρ
)− K̂

2(Ωi)

ρ2

}
+ V (ρ,Ωi) −E

]
Ψ(ρ,Ωi) = 0, (8)

where V (ρ,Ωi) = Vjk(~xi)+Vki(~xi, ~yi)+Vij(~xi, ~yi) is the total interaction potential

expressed in terms of the hyperspherical variables and K̂2(Ωi) is the square of
hyper-angular-momentum operator given by [52]

K̂2(Ωi) = − ∂2

∂φi
2
− 4 cot 2φi ∂

∂φi
+

1

cos2 φi
l̂2(x̂i) +

1

sin2 φi
l̂2(ŷi), (9)

where l̂2(x̂i) and l̂
2(ŷi) are the squares of ordinary orbital angular-momentum op-

erators associated with ~xi and ~yi motions. The operator K̂2 satisfies an eigenvalue
equation [52]

K̂2(Ωi)YKαi(Ωi) = K(K + 4)YKαi(Ωi), (10)

where αi is an abbreviation for the set of four quantum numbers {lxi , lyi , L,M}
and K, the hyper-angular-momentum quantum number (which is not a conserved
quantity for the 3-body system), is given by K = 2ni + lxi + lyi (ni being a non-
negative integer). The quantity K is the degree of the homogeneous harmonic

58 FIZIKA B (Zagreb) 9 (2000) 2, 55–74



khan and das: investigation of exotic 6
ΛΛHe hypernuclei . . .

polynomials ρKYKαi(Ωi) in the Cartesian components of ~xi and ~yi. Note that
the quantum number K is invariant under the change of partition and hence does
not involve the partition label. The eigenfunctions of K̂2 are called hyperspherical
harmonics (HH) and are given by

YKαi(Ωi) = (2)PK
lyi lxi (φi)

[
Ylxi (x̂i) Ylyi (ŷi)

]
LM
, (11)

where

(2)PK
lyi lxi (φi) = NK

lxi , lyi (cos φi)
lxi (sin φi)

lyi Pni
lyi+1/2, lxi+1/2 (cos 2φi). (12)

The normalization constant N
lxi ,lyi
K is given by

N
lxi ,Lyi
K =

[
2 ni!(K + 2)(ni + lxi + lyi + 1)!

Γ(ni + lxi + 3/2) Γ(ni + lyi + 3/2)

] 1
2

(13)

and Pα,βn (x) is the Jacobi polynomial [59]. The HH’s {YKαi(Ωi)} form a complete
orthonormal set in the angular hyperspace (Ωi).

In the present method, the wave function Ψ(ρ,Ωi) is expanded in the complete
set of HH corresponding to a given partition (say partition ‘i’)

Ψ(ρ,Ωi) =
∑
Kαi

UKαi(ρ)

ρ5/2
YKαi(Ωi). (14)

The factor ρ−5/2 is included in order to remove the first-order derivative with
respect to ρ in Eq. (8). Substitution of Eq. (14) in Eq. (8) and the use of orthonor-
mality of HH leads to a set of coupled differential equations (CDE) in ρ

[
− h̄

2

2µ

(
d2

ddρ2
− LK(LK + 1)

ρ2

)
−E

]
UKαi(ρ)

+
∑
K′α ′

i
〈Kαi | V (ρ,Ωi) | K′α ′i 〉UK′α ′

i
(ρ) = 0,

(15)

where LK = K + 3/2 and

〈Kαi|V (ρ,Ωi)|K′α ′i 〉 =
∫
Ωi

Y∗Kαi(Ωi)V (ρ,Ωi)YK′α ′
i
(Ωi) dΩi. (16)

Since the expansion (14) is, in principle, an infinite one, the CDE, Eq. (15) are
also an infinite set. For practical purposes, the expansion (14) has to be truncated to
a finite set, leading to a finite set of CDE. Restrictions arising out of the symmetry
requirement and imposition of conserved quantum numbers (e.g., total angular
momentum, parity etc.) can reduce the expansion basis further and consequently
a smaller set of CDE is to be solved.
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Evaluation of the matrix elements of the type 〈YKαi(Ωi) | Vjk(xi) | YK′α ′
i
(Ωi)〉

(for central interactions) are straightforward, while those for the matrix elements
of the type 〈YKαi(Ωi) | Vki(xj)|YK′α ′

i
(Ωi)〉 and 〈YKαi(Ωi) | Vij(xk) | YK′α ′

i
(Ωi)〉

become very complicated even for central interactions, since both ~xj or ~xk are
expressed as linear combinations of ~xi and ~yi, hence ~xj and ~xk depend on the polar
angles of ~xi and ~yi (i.e. x̂i, ŷi) (see Eq. (2)). But the calculation of these matrix
elements will be quite simple in the partitions ‘j’ or ‘k’, since in these partitions
~xj or ~xk are independent of ~yj and ~yk, respectively. Since the choice of a particular
partition is arbitrary, the HH basis corresponding to any chosen partition ‘i’ forms
a complete set spanning the same hyperangular space. One can then relate the HH
basis for two different partitions ‘i’ and ‘j’ through a unitary transformation. Then,
a particular element YKαi(Ωi) in the partition ‘i’ can be expanded in the HH basis
corresponding to partition ‘j’ as

YKαi(Ωi) =
∑
lxj lyj

〈lxi lyi | lxj lyj〉KLYKαj(Ωj), (17)

where the transformation coefficients 〈lxi lyi | lxj lyj 〉KL are called the Raynal Revai
coefficients (RRC) [60]. Since K, L and M are independent of the partition, the

sum is over lxj and lyj only, subject to the restrictions
~lxi +

~lyi =
~L = ~lxj +

~lyj .
These coefficients can be computed easily [34]. Since the RRC’s do not involve ‘ρ’,
they are calculated once only and stored. That reduces the CPU time significantly.

In terms of the RRC’s, the matrix elements of Vki in the partition ‘i’ can be
writen as

〈YKαi(Ωi) | Vki(xj) | YK′α ′
i
(Ωi)〉 =

∑
l ′xj l

′
yj
lxj lyj

〈lxi lyi | lxj lyj 〉∗KL
× 〈l ′xi l ′yi | l ′xj l ′yj 〉K′L
× 〈YKαj(Ωj) | Vki(xj) | YK′α ′

j
(Ωj)〉 .

(18)

The matrix element on the right-hand side of Eq. (18) has the same form as the
matrix element of Vjk in the partition ‘i’ (the preferred partition) and can be
evaluated in a simple way. Thus computing the RRC’s involved in Eq. (18), the
matrix element of Vki in the partition ‘i’ can be evaluated easily. Similar technique
can be employed for the calculation of the matrix element of Vij.

Calculation of the potential matrix elements in the preferred partition (in which
the pair interaction potential is a function only of the corresponding ~x of the par-
tition) can be further simplified by introducing a multipolar expansion [35] of the
potential. For a matrix element in the preferred partition, say partition ‘i’, the
potential Vjk(xi) is expanded in an appropriate subset of corresponding HH,

Vjk(xi) =
∑
K′′α′′

v
(jk)
K′′α′′(ρ)YK′′α′′(Ωi) , (19)

where v
(jk)
K′′α′′(ρ) is called the potential multipole and can be evaluated by the use

of orthonormality of HH
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v
(jk)
K′′α′′

i
(ρ) =

∫
Vjk(xi)Y ∗K′′α′′

i
(Ωi) dΩi . (20)

The matrix element thus becomes

〈YKαi(Ωi) | Vjk(xi) | YK′α ′
i
(Ωi)〉 =

∑
K′′α′′i

v
(jk)
K′′α′′

i
(ρ)〈Kαi | K′′α′′i | K′α′i〉 , (21)

where

〈Kαi | K′′α′′i | K′α′i〉 =
∫
Y ∗Kαi(Ωi)YK′′α′′i (Ωi)YK′α′i(Ωi) dΩi (22)

are called the geometrical structure coefficients (GSC). They are independent of
ρ and the interaction. Hence, these coefficients need to be calculated once only
and stored resulting in a fast and efficient algorithm. The GSC’s involved in Eq.
(21) can be calculated by a standard numerical integration. However, they can be
calculated in a very elegant manner [40] by using the completeness property of the
HH basis. Finally, the set of CDE’s Eq. (15) is to be solved numericaly subject
to the appropriate boundary conditions to get the energy E and the partial waves
UKαi(ρ).

3. Results and discussion

In the present calculation, we have taken the core to be structureless. Since the
core (α particle) contains only nucleons and no Λ-particles, there is no symmetry
requirements under exchange of the valence Λ-particles with the core nucleons. The
only symmetry requirements are (i) antisymmetrization of the core wave function
under exchange of the nucleons and (ii) antisymmetrization of the three-body wave
function under exchange of the two Λ-particles. The former is implicitly taken care
of in the choice of the α-particle as a building block. The latter is correctly incor-
porated by restricting the lx1 values, as discussed in detail in the following. Thus,
within the three-body model, the symmetry requirements are correctly satisfied
without any approximation. The ground state of 6ΛΛHe has a total angular momen-
tum J = 0 and a positive parity. The possible total spin (S) of the three-body
system (α + Λ+ Λ) can take two values, ‘0’ or ‘1’. Thus the total orbital angular
momentum L can be either 0 or 1 corresponding to S = 0 or 1, respectively. Hence
the ground state of 6

ΛΛHe is an admixture of the states
1S0 and

3P0. However, for
purely central spin-independent interactions (as used in this work), these states do
not mix. In our case, the ground state of 6

ΛΛHe is a pure
1S0 state. Since the α-

particle is spinless, the spin singlet state (S = 0) corresponds to the zero total spin
of the valence Λ-particles (i.e. S23=0). Hence, the spin part of the wave function
is antisymmetric under the exchange of the spins of the two Λ-particles. Thus the
spatial part must be symmetric under the exchange of the two Λ-hyperons. The
symmetry of the spatial part is determined by the hyperspherical harmonics, since
the hyperradius ρ and hence the hyperradial partial waves (UKα(ρ)) are invariant
under permutation of the particles. Under the pair exchange operator P23, which
interchanges particles 2 and 3, ~x1 → −~x1 XXX, and ~y1 remains unchanged (see Eq.
(2)). Consequently, P23 acts like the parity operator for (23) pair only. Choosing
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the two valence Λ-hyperons to be in the spin singlet state (spin antisymmetric), the
space wave function must be symmetric under P23. This requires lx1 to be even.
For the spin singlet state, total orbital angular momentum L = 0, hence we must
have lx1 = ly1 = even integer. Since K = 2n1 + lx1 + ly1 , where n1 is a non-negative
integer, K must be even and

lx1 = ly1 = 0, 2, 4, . . . , K/2 if K/2 is even
0, 2, 4, . . . , K/2− 1) if K/2 is odd

(23)

Again, for the triplet state (S = 1), the two valence Λ-hyperons will be in the
spin triplet state (S23 = 1, spin symmetric). Hence, the space wave function
must be antisymmetric under P23. This then requires lx1 to be odd. For the spin
triplet state, the total orbital angular momentum, L = 1, hence ly1 may take val-
ues lx1 and lx1 ± 1, but the parity conservation allows ly1=lx1 only. Again, since
K = 2n1 + lx1 + ly1 , where n1 is a non-negative integer, K must be even and

lx1 = ly1 = 1, 3, 5, . . ., K/2 if K/2 is odd
1, 3, 5, . . ., K/2− 1) if K/2 is even .

(24)

For a practical calculation, the HH expansion basis (Eq. (14)) is truncated to
a maximum value (Kmax) of K. For each allowed K ≤ Kmax with K = even
integers, all allowed values of lx1 (according to Eq.(23) for spin-independent central
interactions) are included. This truncates Eq. (15) to a set ofN coupled differential
equations, where

N =
(
1
4
Kmax + 1

)2
if Kmax/2 is even

=
(
1
4Kmax +

1
2

) (
1
4Kmax +

3
2

)
if Kmax/2 is odd .

(25)

The truncated set of CDE has been solved by the hyperspherical adiabatic approx-
imation (HAA) [61].

3.1. Two-body potentials

We used the same two types of purely attractive one-term Gaussian αΛ poten-
tials as used by Tang and Herndon [12] without any restriction over l values. The
αΛ potentials are given by

type-A: V AαΛ(r) = V
A
0 exp(−r2/χ2A) with V A0 = −43.46 MeV, χA = 1.578 fm,

type-B: V BαΛ(r) = V
B
0 exp(−r2/χ2B) with V B0 = −60.17 MeV, χB = 1.273 fm.

The αΛ interaction is obtained by folding a Λ-nucleon potential into the nuclear
density distribuion of α-particle which is chosen to have a Gaussian shape with a
r.m.s. radius of 1.44 fm [12]. The first type (type-A) αΛ potential is obtained with
a purely attractive Λ-nucleon interaction of a Gaussian form having an intrinsic
range of 1.5 fm. This αΛ potential reproduces the experimental value (3.04 MeV)
for the binding energy of the Λ-particle in 5ΛHe [62]. The αΛ interaction of type-B
is obtained by using a purely attractive Gaussian Λ-nucleon potential of intrinsic
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range 0.7 fm in the folding process [12]. A number of phenomenological as well as
meson-exchange motivated forms were used for the ΛΛ interaction in earlier at-
tempts. Based on the data available, some selection was made between Nijmegen
potential models [63–64]. Since knowledge of the ΛΛ scattering is still quite inade-
quate, it is not possible to establish a realistic ΛΛ potential at this stage. Instead,
we adopt here a purely phenomenological strategy. For the αΛ potential of the first
type (type-A), the ΛΛ potential is chosen to be a two term l independent Gaussian,
having a short range repulsive part and a longer range attractive part, of the form

VΛΛ(r) = Vr exp(−r2/b2r) − Va exp(−r2/b2a). (26)

We choose the parameters such that the observables of 6ΛΛHe are close to the known
values. This gives Vr = 800 MeV, br = 0.4 fm and Va = 474 MeV, ba = 0.58 fm.
For the type-B αΛ interaction, we used a slightly modified ΛΛ interaction of the
same form but with parameters Vr = 800 MeV, br = 0.4 fm and Va = 447.5 MeV,
ba = 0.58 fm. As evident from Eq. (25), the number of basis states and hence the
size of CDE increases rapidly as Kmax increases. The truncated set of CDE takes
the form

[
− h̄

2

2µ

(
d2

dρ2
− LK(LK + 1)

ρ2

)
−E

]
UKlx1LS(ρ)

+

Kmax∑
K′=0,2,....

∑
l′x1 (allowed)

〈Klx1 | V (ρ,Ω1) | K′l ′x1 〉UK′l ′x1LS(ρ) = 0
(27)

(allowed l′x1=0, 2, . . . only for S = 0, L = 0). Note that the subscripts ly1 (=lx1 )
or l′y1 (=l

′
x1 ) have been suppressed for brevity. The calculated values of binding

energy (BE) for various values of Kmax up to 20 are shown for the ground state
of 6ΛΛHe treated as α+Λ+Λ, for type-A αΛ potential in Table 1 and for type-B αΛ
potential in Table 2.

In Tables 1 and 2, Kmax values are taken to be even integers, as required (see
previous section). The differences in BE [∆(BE) = BE(Kmax)−BE(Kmax − 2)]
for different Kmax are shown in the 3rd columns of Tables 1 and 2. The calculated
binding energy BΛΛ of

6
ΛΛHe agrees fairly well with the experimental value ( (10.80±

0.60) MeV) [2] within the experimental error limit.

Having obtained the wave function by the HH approach and assuming the same
set of two body interactions, some of the observables of the three-body system have
been calculated. These include the r.m.s. radius of 6ΛΛHe

RA =

[
AcR

2
c +mΛ〈r213 + r212〉
Ac + 2mΛ

]1/2
, (28)

whereAc, mΛ are the masses of the core and the Λ-hyperon (in units of nucleon
mass) and Rc is the matter radius of the core. For the

6
ΛΛHe (

4He+Λ + Λ)-system,
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Ac = 4 and Rc = 1.47 fm [65]. The r.m.s. αΛ separation is defined as

RαΛ =

[
1

2
〈r213 + r212〉

]1/2
. (29)

Table 1. Calculated BE BΛΛ for differ-
ent Kmax values for type-A αΛ poten-
tial.

Kmax BE (MeV) ∆(BE) MeV

0 09.79427

2 10.05604 0.26177

4 10.50092 0.44488

6 10.60920 0.10828

8 10.67141 0.06221

10 10.71487 0.04346

12 10.74764 0.03277

14 10.77131 0.02367

16 10.78781 0.01650

18 10.79901 0.01120

20 10.80649 0.00748

Table 2. Calculated BE BΛΛ for differ-
ent Kmax values for type-B αΛ poten-
tial.

Kmax BE (MeV) ∆(BE) (MeV)

0 09.70729

2 09.86155 0.15126

4 10.48417 0.62262

6 10.60990 0.12573

8 10.68669 0.07679

10 10.73439 0.04770

12 10.76657 0.03218

14 10.78820 0.02173

16 10.80178 0.01358

18 10.81038 0.00860

20 10.81581 0.00543

The expectation value of the observables 〈r213+ r212〉 are obtained by the expres-
sion

〈r213 + r212〉 =
∑

KK′lx1LS

∞∫
0

ρ2dρUKlx1LS(ρ)UK′ lx1LS(ρ) (30)

×
π/2∫
0

(2)PK
lx1 ,lx1 (φ) (2)PK′

lx1 ,lx1 (φ)

[√
5

8
cos2 φ+

√
8

5
sin2 φ

]
cos2 φ sin2 φ dφ.

The r.m.s. separation between the valence Λ-hyperons (RΛΛ) is given by the ex-
pression

RΛΛ =
√
〈r223〉 , (31)

where

〈r223〉 =
√
5
2

∑
KK′lx1LS

∫ ∞
0

ρ2dρUKlx1LS(ρ)UK′lx1LS(ρ)

×
∫ π/2
0

(2)PK
lx1 ,lx1 (φ) (2)PK′

lx1 ,lx1 (φ) cos4 φ sin2 φ dφ .

(32)
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The r.m.s. separation between the core (α) and the C.M. of ΛΛ pair is given by
the expression

R(ΛΛ)c =
√
〈r2(23)1〉 , (33)

where

〈r2(23)1〉 =
√
2
5

∑
KK′lx1LS

∫ ∞
0

ρ2dρ UKlx1LS(ρ) UK′lx1LS(ρ)

×
∫ π/2
0

(2)PK
lx1 ,lx1 (φ) (2)PK′

lx1 ,lx1 (φ) cos2 φ sin4 φ dφ .

(34)

We then calculated the ratio RΛΛ/R(ΛΛ)c to compare it with the results of a three-

body AZ + Λ+ Λ calculation by Yamamoto et al. [67] with finite range ΛΛ potential
with a repulsive core. The computed values of these observables for various Kmax
are shown in Tables 3 and 4. The binding energy and some other observables
computed by Ikeda et al. [16] is shown in Table 5.

Table 3. Calculated observables for 6
ΛΛHe for different Kmax values for type-A αΛ

potential.

Kmax RA(matter) RαΛ RΛΛ R(ΛΛ)c RΛΛ η

(fm) (fm) (fm) (fm) R(ΛΛ)c

0 1.6948 2.0171 2.5019 1.5824 1.5811 0.3162

2 1.6850 1.9948 2.5198 1.5466 1.6293 0.3198

4 1.6984 2.0251 2.5399 1.5774 1.6102 0.3221

6 1.6984 2.0251 2.5418 1.5766 1.6122 0.3224

8 1.6982 2.0247 2.5358 1.5786 1.6064 0.3231

10 1.6972 2.0225 2.5313 1.5776 1.6045 0.3234

12 1.6965 2.0209 2.5277 1.5769 1.6030 0.3238

14 1.6960 2.0199 2.5251 1.5766 1.6016 0.3241

16 1.6958 2.0193 2.5234 1.5766 1.6005 0.3242

18 1.6957 2.0190 2.5222 1.5767 1.5997 0.3244

20 1.6957 2.0190 2.5215 1.5770 1.5989 0.3246

Finally, in order to study the correlation among the constituent particles
(i.e. the α-core and the valence Λ-hyperons), we computed the probability

density P (rΛΛ, r(ΛΛ)c), where rΛΛ =
[
(m1(m2 +m3)

2)/(m2m3M)
]1/4
x1 and

r(ΛΛ)c =
[
(m2m3M)/(m1(m2 +m3)

2)
]1/4

y1 (see Eq. (2)) are, respectively, the
separation between the valence Λ-hyperons and the separation of the core from the
centre of mass of the valence Λ-hyperons. The probability density is defined as the
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Table 4. Calculated observables for 6
ΛΛHe for different Kmax values for type-B αΛ

potential.

Kmax RA(matter) RαΛ RΛΛ R(ΛΛ)c RΛΛ η

(fm) (fm) (fm) (fm) R(ΛΛ)c

0 1.6160 1.8356 2.2767 1.4399 1.5811 0.3162

2 1.6100 1.8215 2.3117 1.4078 1.6421 0.3133

4 1.6239 1.8540 2.3380 1.4391 1.6246 0.3152

6 1.6239 1.8541 2.3432 1.4370 1.6314 0.3149

8 1.6241 1.8550 2.3393 1.4391 1.6255 0.3155

10 1.6232 1.8525 2.3362 1.4379 1.6247 0.3159

12 1.6227 1.8514 2.3335 1.4374 1.6245 0.3161

14 1.6225 1.8507 2.3318 1.4373 1.6223 0.3164

16 1.6224 1.8505 2.3307 1.4374 1.6215 0.3165

18 1.6224 1.8505 2.3300 1.4477 1.6206 0.3167

20 1.6224 1.8505 2.3296 1.4479 1.6201 0.3168

Table 5. Calculated observables for 6
ΛΛHe system by K. Ikeda et al. 16].

BE (MeV) RA(matter) (fm) RΛΛ(fm) R(ΛΛ)c(fm)

10.80 1.58 2.52 1.60

probability of finding the three-body system having definite separations between
the constituent particles. This probability density is given by the expression

P (rΛΛ, r(ΛΛ)c) (35)

=
∑

KK′lx1LS

UKlx1LS(ρ)UK′lx1LS(ρ)
(2)P

lx1 ,lx1
K (φ)(2)P

lx1 ,lx1
K′ (φ) cos2 φ sin2 φ ,

with

ρ =

[√
2

5
r2ΛΛ +

√
5

2
r2(ΛΛ)c

]1/2
(36)

and

φ = tan−1
(√
5

2

r(ΛΛ)c

rΛΛ

)
. (37)
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A three-dimensional plot of P (rΛΛ, r(ΛΛ)c) as a function of rΛΛ and r(ΛΛ)c is dis-
played in Figs. 2a and b for the type-A and type-B αΛ potentials, respectively. The
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Fig. 2. Correlation density plot for the ground state of 6ΛΛHe in the ΛΛ and (ΛΛ)c
variables (in fm) a) for type-A αΛ potential and b) for type-B αΛ potential.

density plot exhibits a cigar-like shape where the valence Λ-hyperons are located
on opposite side of the α-core (rΛΛ > r(ΛΛ)c). This can further be confirmed by
computing a correlation coefficient defined as

η = 〈r
2
(ΛΛ)c

ρ2
〉

=
√
2
5

∑
KK′lx1LS

∫ ∞
0

dρ UKlx1LS(ρ) UK′lx1LS(ρ)

×
∫ π/2
0

(2)PK
lx1 ,lx1 (φ) (2)PK′

lx1 ,lx1 (φ)

× cos2 φ sin4 φ dφ.

(38)

A small value of this coefficient will indicate that the two valence Λ-hyperons are
situated on opposite sides of the α-core (i.e., a cigar shape where the Λ-hyperons
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are anti-correlated). A large value (η ≤ 1) will indicate the possibility of Λ − Λ
correlation.

The computed values of this coefficient for various Kmax are shown in the last
columns of Tables 3 and 4. As the value of η is small (≈ 0.32), a cigar shape is
indicated on the average. Thus, the correlation density plots (Figs. 2a and b) and
the computed value of the correlation coefficient η both indicate that the cigar-like
structures are probable. In addition to the above, we also calculated the BE, the
r.m.s. matter radii, the correlation coefficient (η), the partial probability (Pl) and
plotted the probability density to compare our calculation with those of Ikeda et
al. [16], using the same potential model as used by Ikeda. They assumed the ΛN
and ΛΛ interactions to be central with a simple Gaussian form [13]

V (r) = V 0 exp(−r2/β2) .
ΛN: V 0 = −38.19 MeV, β = 1.034 fm
ΛΛ: V 0 = −52.25 MeV, β = 1.034 fm.

The ΛN interaction folded with Φα (
4He core wave function) gives the Λα potential

VΛα(r),

Λα: V 0 = −64.20 MeV, β = 1.173 fm.
For various Kmax values, the binding energies are listed in Table 6, the r.m.s. radii
and the correlation coefficient are listed in Table 7 while the partial probabilities
are listed in Table 8. The probabilty density distribution is depicted in Fig. 3. If
we now make a comparison of the results obtained in the present calculation (see
Table 6) and those obtained by Ikeda et al. (see Table 5), we immediately find that

Table 6. Calculated BE BΛΛ for different Kmax values for potential model of Ikeda
et al. [16].

Kmax BE (MeV ) ∆(BE) MeV

0 9.85620

2 9.92450 0.06830

4 10.53343 0.60893

6 10.59943 0.06600

8 10.62321 0.02378

10 10.62669 0.00348

12 10.62813 0.00144

14 10.62864 0.00051

16 10.62879 0.00015

18 10.62885 0.00006

20 10.62888 0.00003
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Table 7. Calculated observables for 6
ΛΛHe for different Kmax values

for potential model of Ikeda et al. [16].

Kmax RA(matter) RαΛ RΛΛ R(ΛΛ)c RΛΛ η

(fm) (fm) (fm) (fm) R(ΛΛ)c

0 1.5855 1.7627 2.1863 1.3828 1.5811 0.3142

2 1.5837 1.7583 2.1888 1.3761 1.5906 0.3201

4 1.5971 1.7906 2.2181 1.4058 1.5778 0.3218

6 1.5995 1.7964 2.2284 1.4091 1.5814 0.3215

8 1.6017 1.8016 2.2300 1.4160 1.5749 0.3219

10 1.6021 1.8025 2.2309 1.4160 1.5750 0.3219

12 1.6024 1.8031 2.2310 1.4167 1.5748 0.3221

14 1.6025 1.8034 2.2310 1.4170 1.5747 0.3221

16 1.6025 1.8035 2.2310 1.4171 1.5746 0.3221

18 1.6025 1.8035 2.2310 1.4170 1.5747 0.3221

20 1.6025 1.8036 2.2310 1.4172 1.5742 0.3221

Table 8. Calculated Contribution of various orbital angular momenta to the prob-
ability distribution of 6ΛΛHe for potential model of Ikeda et al. [16] (l = lx1 = ly1).

Kmax Partial probability (Pl)

l = 0 l = 2 l = 4

0 1.0000 0.0000 0.0000

2 1.0000 0.0000 0.0000

4 0.9932 0.0068 0.0000

6 0.9930 0.0070 0.0000

8 0.9929 0.0070 0.0001

10 0.9929 0.0070 0.0001

12 0.9929 0.0070 0.0001

14 0.9929 0.0070 0.0001

16 0.9929 0.0070 0.0001

18 0.9929 0.0070 0.0001

20 0.9929 0.0070 0.0001

the binding energy converges nicely at Kmax = 20. However, one may notice that
the fully converged value of the BE is slightly less than that obtained by Ikeda
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et al. This discrepancy in the binding energy may have arisen due to the different
choice of masses of the system particles. It is true that the restriction to l = 4
(l = lx1 = ly1 ) does not lead to any significant effect to the partial probability (see
Table 8), but it leads to a small increment (≈ 0.005 MeV) in the binding energy
(see Table 6). The values of the calculted r.m.s. matter radius RA (see column 2
of Table 7) do not differ much from those obtained by Ikeda et al. (see Table 5),
however, other observables differ slightly. These small differences may be due to
the different theoretical method used by Ikeda et al.
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Fig. 3 Correlation density plot for the ground state of 6
ΛΛHe in the ΛΛ and (ΛΛ)c

variables (in fm) for potential model of Ikeda et al. [16].

4. Conclusion

The hyperspherical harmonics expansion (HHE) method adopted here is an es-
sentially exact method, where calculations can be carried out up to any desired
precision. This can be seen in Tables 1 – 4, 6 and 7. As is evident from Tables 1
and 2, the convergence of the binding energy (with respect to increasing Kmax) is
relatively slow, whereas the convergence rate for the other observables (Tables 3
and 4) are faster. The observed ground state binding energies of the nuclei 6ΛΛHe,
6He(α+n+n) and 6Li(α+n+p) are (10.80±0.60) MeV [2], (0.973±0.04) MeV [65]
and 3.672 MeV [66], respectively. At present, we have no experimental data for
the r.m.s. matter radius of 6

ΛΛHe to compare with our calculated result. But the
relatively large value of the binding energy of 6ΛΛHe indicates that it is more com-
pact than the 6He(α+n+n) and 6Li(α+n+p) systems. This in turn demands that
the r.m.s. matter radius of 6

ΛΛHe should have a smaller value compared to that
for 6He and 6Li nuclei. The observed matter radii for 6He and 6Li are respec-
tively (2.57 ± 0.10) fm [65] and (2.56 ± 0.05) fm [66] which are larger than the
matter radii (RA) calculated by us (see Tables 3 and 4) and by Ikeda et al. (see
Table 5) for the ground state of 6

ΛΛHe. This agrees with the foregoing remark. A
relatively small value (≈ 0.32) (see Tables 3 and 4) of the calculated correlation
coefficient indicates that the valence hyperons are not correlated. A comparision of
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Tables 3 and 4 with Table 5 shows that the calculated value of the r.m.s. matter
radius (RA(matter)) for type-B αΛ potential agrees fairly well with that calcu-
lated by Ikeda et al., while the r.m.s. R(ΛΛ)c and RΛΛ radii agree with those for
type-A of αΛ potential. The calculated value of the ratio RΛΛ/R(ΛΛ)c (see Ta-
bles 3 and 4) for both types of αΛ potentials used here are quite close to the
value (1.53) obtained by Yamamoto et al. [67]. The reliability of the HHE method
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Fig. 4 Plot of the type-A, type-B and Ikeda’s [16] ΛΛ potentials.
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lends credence to the information sought about the αΛ and ΛΛ potentials from the
bound state properties of 6

ΛΛHe. A number of αΛ and ΛΛ potentials have already
been used in the literature [12,16]. The results of calculations by Ikeda et al [16]
seem to be closer to the experimental value of BE and various radii expected from
phenomenological arguments. However, although one does not expect a repulsive
core in the αΛ potential (since α contains no Λ-particles and the Pauli repulsive
core should be absent), one infact can expect a strongly repulsive core in the ΛΛ
potential. In the potential model proposed by Ikeda et al., there is no repulsive core
in the ΛΛ potential. Hence, we slightly modified the potential model of Tang and
Herndon [12] to include a soft repulsive core in the ΛΛ potential, in both models A
and B. We have verified that the αΛ potential chosen here reproduce the binding
energy of the Λ-particle in 5ΛHe correctly. As discussed above, both produce BE
within experimental error limits and important radii within experimental range.
Out of these, the potential model-B appears to produce results closer to those of
Ikeda et al. In Figs. 4 and 5, we compare the αΛ and ΛΛ potentials of all three
models. Since our model-B produces experimental results for 6

ΛΛHe and also has
a soft repulsive core in the ΛΛ potential, we conclude that this one is a better
potential model for the αΛ and ΛΛ interactions.
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ISTRAŽIVANJE EGZOTIČNIH HIPERJEZGRI 6
ΛΛHe HIPERSFERIČNOM

METODOM TRI TIJELA

Pažljivo istražujemo dinamiku ΛΛ ispitivanjem nekoliko ΛΛ i Λα fenomenoloških
potencijala proučavajući svojstva vezanih stanja 6

ΛΛHe kao sustava tri tijela. Primije-
nili smo metodu hipersferičnih harmonika, koja je u biti egzaktna metoda za sustav
tri tijela. Postigli smo konvergenciju energije vezanja do 0.07% za Kmax = 20. U
ovim se računima nisu primijenila približenja ograničenjem dozvoljenih vrijednosti
l med–udjelujućeg para tijela.
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