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We give a brief review a quantum stabilization method for the SU(2) σ-model,
based on the constant-cutoff limit of the cutoff quantization method developed by
Balakrishna et al., which avoids the difficulties with the usual soliton boundary
conditions pointed out by Iwasaki and Ohyama. We then study the radiative de-
cays of hyperons in the constant-cutoff approach to the bound state soliton model,
developed by Callan, Hornbostel and Klebanov. The results for the total decay
widths and the E2/M1 ratios, corresponding to decouplet-to-octet electromagnetic
transitions, are obtained in a qualitative agreement with the results obtained us-
ing constant-cutoff approach to the SU(3) collective model, the complete Skyrme
models and quark-based models.
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1. Introduction
It was shown by Skyrme [1] that baryons can be treated as solitons of a nonlinear

chiral theory. The original Lagrangian of the chiral SU(2) σ-model is given by

L =
F 2

π

16
Tr ∂µU∂µU+ (1)

where

U =
2

Fπ
(σ + i ~τ · ~π) (2)
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is a unitary operator (UU+ = 1) and Fπ is the pion-decay constant. In (2), σ = σ(~r)
is a scalar meson field and ~π = ~π(~r) is the pion-isotriplet.

The classical stability of the soliton solution to the chiral σ-model Lagrangian
requires the additional ad-hoc term, proposed by Skyrme [1], to be added to (1)

Lsk =
1

32e2
Tr [U+∂µU, U+∂νU ]2 (3)

with a dimensionless parameter e and where [A,B] = AB − BA. It was shown
by several authors [2] that, after the collective coordinate quantization using the
spherically symmetric ansatz

U0 = exp[i~τ · ~r0F (r)] , ~r0 = ~r/r , (4)

the chiral model, with both (1) and (3) included, gives a good agreement with the
experiment for several important physical quantities. Thus it should be possible
to derive the effective chiral Lagrangian, obtained as a sum of (1) and (3), from a
more fundamental theory like QCD. On the other hand, it is not easy to generate
the terms like (3) and give a clear physical meaning to the dimensionless constant
e in (3) using QCD.

Mignaco and Wulck (MW) [3] indicated therefore a possibility to build a stable
single baryon (n = 1) quantum state in the simple chiral theory, with Skyrme
stabilizing term (3) omitted. Despite the non-existence of the stable classical soliton
solution to the non-linear σ-model, it is possible, to build a stable chiral soliton
at the quantum level, after the collective coordinate quantization, provided that
there is a solution F = F (r) which satisfies the soliton boundary conditions, i.e.
F (0) = −nπ and F (∞) = 0.

However, as pointed out by Iwasaki and Ohyama [4], the quantum stabiliza-
tion method in the form proposed by MW [3] can not be used, since in the simple
σ-model the conditions F (0) = −nπ and F (∞) = 0 cannot be satisfied simultane-
ously. In other words, if the condition F (0) = −π is satisfied, Iwasaki and Ohyama
obtained numerically F (∞) = −π/2, and the chiral phase F = F (r) with correct
boundary conditions does not exist.

In Ref. [8], the present author suggested a method to resolve this difficulty by
introducing a radial modification phase ϕ = ϕ(r) in the Ansatz (4), as follows

U(~r) = exp[i ~τ · ~r0F (r) + iϕ(r)] . (5)

Such a method provides a stable chiral quantum soliton but the resulting model is
an entirely non-covariant chiral model, different from the original chiral σ-model.

In the present paper, we use the constant-cutoff limit of the cutoff quantiza-
tion method developed by Balakrishna, Sanyuk, Schechter and Subbaraman [6] to
construct a stable chiral quantum soliton within the original chiral σ-model. We
then study the radiative decays of hyperons in the constant-cutoff approach to the
Callan, Hornbostel and Klebanov (CHK) bound state soliton model [7]. Thus the
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results for the total decay widths and the E2/M1 ratios corresponding to decouplet-
to-octet electromagnetic transitions are obtained in a qualitative agreement with
the results obtained using the constant-cutoff approach to the SU(3) collective
model [14] (DCOL), the complete SU(3) collective model [9] (CCOL), the complete
CHK bound state soliton model [10] (CCHK), non-relativistic quark model [11]
(NRQM) and the quenched lattice model [12] (QLM).

The reason why the cutoff-approach to the problem of chiral quantum soliton
works is connected to the fact that the solution F = F (r), which satisfies the
boundary condition F (∞) = 0, is singular at r = 0.

From the physical point of view, the chiral quantum model is not applicable
to the region about the origin since in the physical world in that region there is
a quark-dominated ’bag’ of the soliton. However, in the constant-cutoff approach
employed here, the ’cavity’ in the middle of the soliton is not assumed to carry any
quark degrees of freedom.

Therefore, the present model differs from the hybrid models [13], where in the
CHK bound-state SU(3)-soliton model a cavity populated with quarks is introduced
in the center of the soliton. The present model is fully analogous to the original
Skyrme model and our soliton is a topological soliton with the winding number
equal to the baryon number. The total baryon number is determined by the soliton
degrees of freedom from the region where r is larger than the cutoff ε, and there
are no contributions from any quark degrees of freedom in the ’bag’. Thus, in the
constant cutoff model there is no problem with the balance of the baryon number
of hyperons.

However, as argued in Ref. [6], when a cutoff ε is introduced, then the boundary
conditions F (ε) = −nπ and F (∞) = 0, can be satisfied. In Ref. [6], an interesting
analogy with the damped pendulum has been discussed, showing clearly that as
long as ε > 0, there is a chiral phase F = F (r) satisfying the above boundary
conditions. The asymptotic forms of such a solution are given by Eq. (2.2) in Ref.
[6]. From these asymptotic solutions, we immediately see that for ε → 0, the chiral
phase diverges at the lower limit.

Different applications of the constant-cutoff approach have been discussed in
Ref. [14].

2. Constant-cutoff stabilization
The chiral soliton with baryon number n = 1 is given by (4), where F = F (r)

is the radial chiral phase function satisfying the boundary conditions F (0) = −π
and F (∞) = 0.

Substituting (4) into (1), we obtain the static energy of the chiral baryon

M =
π

2
F 2

π

∞∫
ε(t)

dr [r2(
dF

dr
)2 + 2 sin2 F ] . (6)
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In (6), we avoid the singularity of the profile function F = F (r) at the origin by
introducing the cutoff ε(t) at the lower boundary of the space interval r ∈ [0,∞],
i.e. by working with the interval r ∈ [ε,∞]. The cutoff itself is introduced following
Ref. [6] as a dynamic time-dependent variable. From (6), we obtain the following
differential equation for the profile function F = F (r)

d
dr

(r2 dF

dr
) = sin(2F ) , (7)

with the boundary conditions F (ε) = −π and F (∞) = 0, such that the correct soli-
ton number is obtained. The profile function F = F [r; ε(t)] now depends implicitly
on time t through ε(t). Thus from the nonlinear σ-model Lagrangian (1), following
the derivation given in Ref. [15], we obtain

L = cẋ2 − ax2/3 + 2bx2α̇ν α̇ν , (8)

where x(t) = [ε(t)]3/2, y = r/ε and Tr(∂0A∂0A
+) = 2α̇ν α̇ν with αν (ν = 0, 1, 2, 3)

being the collective coordinates defined as in Ref. [16]. In (8) the integrals a , b and
c are defined as follows [15]

a =
π

2
F 2

π

∞∫
1

dy [y2(
dF

dy
)2 + 2 sin2 F ], b =

2π

3
F 2

π

∞∫
1

dy y2 sin2 F , (9)

c =
2π

9
F 2

π

∞∫
1

dy y2(
dF

dy
)2y2 .

In the limit of a time-independent cutoff (ẋ → 0), we can write

H =
∂L

∂α̇ν
α̇ν − L = ax2/3 + 2bx2α̇ν α̇ν = ax2/3 +

1
2bx2

J(J + 1) , (10)

where ~J2 = J(J+1) is the eigenvalue of the square of the soliton laboratory angular
momentum. A minimum of (10) with respect to the parameter x is reached at

x =
[
2
3

ab

J(J + 1)

]−3/8

⇒ ε−1 =
[
2
3

ab

J(J + 1)

]1/4

. (11)

The energy obtained by substituting (11) into (10) is given by

E =
4
3

[
3
2

a3

b
J(J + 1)

]1/4

. (12)

This result is identical to the result obtained by Mignaco and Wulck which is
easily seen if we rescale the integrals a and b in such a way that a → (π/4)F 2

πa,
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b → (π/4)F 2
πb and introduce fπ = 2−2/3Fπ. However, in the present approach,

as shown in Ref. [6], there is a profile function F = F (y) with the proper soliton
boundary conditions F (1) = −π and F (∞) = 0, and the integrals a, b and c in
(9) exist and are shown in Ref. [6] to be a = 0.78 GeV2, b = 0.91 GeV2 and
c = 1.46 GeV2 for Fπ = 186 MeV.

A discussion about the quantitative predictions for some empirical results for
nucleons and ∆ particles in the present model can be found in Ref. [15].

3. The constant-cutoff approach to CHK bound-state
soliton model

3.1. The effective Lagrangian

Following Ref. [14], we write the effective SU(3) Lagrangian as follows

L =
F 2

π

16
Tr ∂µU∂µU+ +

F 2
π

16
m2

π Tr (U + U+ − 2)

+
F 2

K − F 2
π

48
Tr (1 −

√
3λ8)(U∂µU∂µU+ + ∂µU∂µU+U+) (13)

+
F 2

Km2
K − F 2

πm2
π

24
(1 −

√
3λ8) Tr (U + U+ − 2)

where mπ and mK are pion and kaon masses, respectively, and FK is the kaon weak-
decay constant with the empirical ratio to pion decay constant FK/Fπ ≈ 1.23. The
first term in (13) is the usual σ-model Lagrangian, while the remaining terms are
chiral-symmetry-breaking terms present in the mesonic sector of the model. In
addition to the action obtained using the Lagrangian (13), the Wess-Zumino action
in the form

S = − iNC

240π2

∫
d5x eµναβγ Tr [U+∂µUU+∂νUU+∂αUU+∂βUU+∂γU ] (14)

must be included in the total action of the model, where NC is the number of
colours in the underlying QCD. The Wess-Zumino action defines the topological
properties of the model important for the quantization of the solitons. In the SU(2)
case, the Wess-Zumino action vanishes identically and was therefore not present in
the discussions of the previous two sections.

In the present approach, the meson-soliton field is written in the form

U =
√

Uπ UK

√
Uπ (15)
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where Uπ is a SU(3) extension of the usual SU(2) skyrmion field used to describe
the nucleon spectrum, and UK is the field used to decribe the kaons.

Uπ =
[

uπ 0
0 1

]
, UK = exp

{
i

23/2

FK

[
0 K

K+ 0

]}
. (16)

In (16), uπ is the usual SU(2)-skyrmion field given by (4) and K is the two-
dimensional kaon doublet given by

K =
[

K+

K0

]
, K+ = [K− K

0
] . (17)

Substituting now (15) with (16) into the total action of the kaon-soliton system
and expanding UK to the second order in kaon fields (17), we obtain the Lagrangian
consisting of the pure SU(2) Lagrangian depending on the soliton field only and
the effective interaction-Lagrangian between the soliton and the kaon fields given in
[14]. From the effective interaction-Lagrangian, we obtain the following eigenvalue
equation for kaon modes [14]

∇2K(~r)+[v0(r)−2
1 − cos F

r2
~I ·~L] K(~r)−m2

KK(~r)+2ωλ(r)K(~r)+ω2K(~r) = 0 (18)

where ~L is the kaon orbital momentum, ~I is the total angular momentum of the
rotating soliton and ω is the bound-state energy of the kaon-soliton system. In (18),
we have introduced the quantities v0(r) and λ(r) as follows

v0(r) =
1
4
(
dF

dr
)2 +

cos F (1 − cos F )
r2

+
F 2

πm2
π

2F 2
K

(1 − cos F ) (19)

λ(r) = − NC

2π2F 2
K

sin2 F

r2

dF

dr
. (20)

3.2. The hyperon spectrum

Expanding the kaon wave functions K(~r) in terms of vector spherical harmonics
[14] as follows

K(~r) =
∑
α,L

kαLYαIL , (21)

the wave equation (18) becomes a one-dimensional differential equation. The form
of the interaction makes the P-state (α = 1

2 , L = 1) the lowest bound state corre-
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sponding to the octet and decouplet hyperons. The splittings among the hyper-
ons with different spins and/or isospins are described by the rotational corrections,
obtained after applying the following rotations to the kaon and soliton fields, re-
spectively

K → a(t)K , U → A(t)UA+(t) (22)

where

A(t) =
[

a(t) 0
0 1

]
(23)

is a SU(2) subgroup of SU(3). The SU(2) rotational operator A(t) adds extra time-
derivative terms to the Lagrangian, so that, after Ref. [14], we obtain the following
formula for the hyperon spectrum

E = E0 + ω | S | +
1

2Ω

[
cJ(J + 1) + (1 − c)I(I + 1) +

1
4
c(c − 1) | S | (| S | +2)

]
(24)

where E0 is the soliton mass, Ω is the moment of inertia of the soliton, given by

Ω =
2π

3
F 2

π

∞∫
ε

dr r2 sin2 F (25)

and c is the hyperfine splitting constant, given by

c = 1 − 8ω

3

∞∫
ε

dr r2k∗
P (r) cos2

F

2
Kp(r) . (26)

In the constant-cutoff approach, using the formula (24), we obtain the following
hyperon spectrum [14]

E = ω | S | +
4
3

{
3
2

a3

b

[
cJ(J + 1) + (1 − c)I(I + 1) +

1
4
c(c − 1) | S | (| S | +2)

]}1/4

(27)
and the following expression for the inertia of the soliton [14]

Ω = b

{
3
2

1
ab

[
cJ(J + 1) + (1 − c)I(I + 1) +

1
4
c(c − 1) | S | (| S | +2)

]}3/4

(28)

with a and b defined by (9). In Ref. [14], it was shown that the formula (27) gives
a good agreement with the empirical spectrum of hyperons.
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3.3. Radiative decays of hyperons

In the present paper, we consider the radiative decays of hyperons, i.e. the
processes

Σ∗ → Λγ , Σ∗ → Σγ , Ξ∗ → Ξγ . (29)

For the processes listed in (29), both M1 and E2 transitions are allowed, and
using the usual multipole expansion of the electromagnetic field, we have [14]

ΓE2(B∗ → Bγ) =
675
8

αemq |< B | Ê(q) | B∗ >|2 , (30)

ΓM1(B∗ → Bγ) = 18αemq |< B | M̂(q) | B∗ >|2 (31)

where [14]

Ê(q) =
1
2

∫
r>ε

d3~r j2(qr)(
z2

r2
− 1

3
)Jem

0 , (32)

M̂(q) =
1
2

∫
r>ε

d3 ~rj1(qr)ε3ijr0iJ
em
j . (33)

In these equations, Jem
µ is the electromagnetic current operator obtained explicitly

in Ref. [14], αem = 1/137 is the electromagnetic fine structure constant and q is the
photon momentum. In (32), (33) j2(qr) and j1(qr) are spherical Bessel functions
of the order l = 2 and l = 1, respectively.

In the present paper the constant-cutoff approach to the CHK bound state
soliton model gives [14]

M̂(q) = m1(q)J3
c − 2[m2(q) + m3(q) | S |]R33 + m4(q)J−3 , (34)

Ê(q) = e1(q)
[
J3

c R33 +
I3

3

]
+ e2(q)

[
J−3R33 − J−aR3a

3

]
, (35)

where Jc is the collective angular momentum, J− is the bound kaon isospin and
Rij = 1

2Tr[τiAτjA
+] . In (34) and (35), mi(i = 1, 2, 3, 4) and ei(i = 1, 2), respec-

tively, are obtained explicitly in [14] in the following form

m1(q) = − 1
3πΩ

∞∫
ε

dr rj1(qr) sin2 F
dF

dr
, (36)

m2(q) =
π

6
F 2

π

∞∫
ε

dr rj1(qr) sin2 F , (37)
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m3(q) =
1
6

∞∫
ε

dr rj1(qr)k2 cos2 F (1 − 4 sin2 F ) (38)

+
NC

18
ω

F 2
Kπ2

∞∫
ε

dr rj1(qr)
(

k2 sin2 F
dF

dr
+ k

dk

dr
sin 2F

)
,

m4(q) = cm1(q) − 2
3

∞∫
ε

dr rj1(qr)k2 cos2
F

2
, (39)

e1(q) = −2πF 2
π

15Ω

∞∫
ε

dr r2j2(qr) sin2 F , (40)

e2(q) = ce1(q) +
8
15

∞∫
ε

dr r2j2(qr)[ωk2 cos2
F

2
(41)

− NC

12π2F 2
K

1
r2

cos2
F

2

(
k2 dF

dr
cos2

F

2
− k

dk

dr
sinF

)
.

The matrix elements of the operators M̂(q) and Ê(q) between the relevant
baryon states are obtained, following Refs. [10] or [14], using the standard angular
momentum techniques, as follows

< Λ | M̂(q) | Σ∗
0 >=

2
√

2
3

[m2(q) + m3(q)] , (42)

< Σ0 | M̂(q) | Σ∗
0 >=

√
2

3
[m1(q) − m4(q)] , (43)

< Σ± | M̂(q) | Σ∗
± >=

√
2

3
[m1(q) − m4(q) ± (m2(q) + m3(q))] , (44)

< Ξ0
¯
| M̂(q) | Ξ∗

0
¯

>=
√

2
3

[m1(q) − m4(q) ± 4
3
(m2(q) + 2m3(q))] , (45)

< Λ | Ê(q) | Σ∗
0 >= −

√
2

6
e1(q) , (46)

< Σ0 | Ê(q) | Σ∗
0 >= 0 , (47)
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< Σ± | Ê(q) | Σ∗
± >= ∓

√
2

6
[e1(q) − 1

6
e2(q)] , (48)

< Ξ0
¯
| Ê(q) | Ξ∗

0
¯

>= ∓4
√

2
27

e2(q) . (49)

Finally we give the expression for the E2/M1 ratios. Following Refs. [10] or [14],
we may write

E2
M1

=
5
4

< Ê(q) >

< M̂(q) >
(50)

such that the following relation is satisfied

ΓE2

ΓM1
= 3[

E2
M1

]2 . (51)

4. Numerical results
The numerical results for the hyperon radiative decay widths in keV obtained

in the present paper are presented in Table 1. In Table 1, the present results are
also compared with the results obtained using DCOL, CCOL, CCHK, NRQM and
QLM.

Table 1. Hyperon radiative decay widths in keV.

This DCOL CCOL CCHK NRQM QLM

work [14] [9] [10] [11] [12]
Set 1 Set 2 Set 1 Set 2

Σ∗0 → Λγ 227 178 180 194 243 170 232 -
Σ∗− → Σ−γ 1 2 1 2 1 1 2 3
Σ∗0 → Σ0γ 18 16 15 12 19 11 18 17
Σ∗+ → Σ+γ 85 80 78 71 91 59 100 100
Ξ∗− → Ξ−γ 4 4 3 4 5 5 3 4
Ξ∗0 → Ξ0γ 135 121 115 108 148 97 137 129

The numerical results for the ratios E2/M1 in (%) obtained in the present paper
are presented in Table 2. In Table 2, the comparison of present results with the
results obtained using DCOL, CCOL and CCHK is also given.

From Tables 1 and 2, we see that the present results are in relatively good
qualitative agreement with the results obtained using the complete CHK model
in Ref. [10]. There is also a qualitative agreement with the results obtained using
the other models. For the E2/M1 ratio, we see that our results are closer to those
obtained in Ref. [10] than to those obtained in Refs. [14] and [9], which is expected
due to the fact that the present approach is based on the bound-state soliton model
used in Ref. [10].

144 FIZIKA B (Zagreb) 9 (2000) 3, 135–146



dalarsson: constant cutoff approach to hyperon radiative decays in . . .

Table 2. Ratios E2/M1 in (%).

This DCOL CCOL CCHK

work [14] [9] [10]
Set 1 Set 2 Set 1 Set 2

Σ∗0 → Λγ -4.4 -3.9 -3.8 -3.7 -4.7 -5.4
Σ∗− → Σ−γ -37.9 -6.0 -7.3 -4.3 -57.7 -51.1
Σ∗0 → Σ0γ 0 -1.4 -1.5 -1.9 0 0
Σ∗+ → Σ+γ -4.1 -2.0 -2.2 -2.3 -4.8 -7.6
Ξ∗− → Ξ−γ -12.6 -4.6 -6.1 -4.3 -17.8 -18.5
Ξ∗0 → Ξ0γ -3.0 -2.0 -2.4 -2.6 -3.1 -4.4

5. Conclusions
We have shown the possibility of using the Skyrme model for the study of the

radiative decays of hyperons in the constant-cutoff approach to the CHK bound
state soliton model [7], without the use of the Skyrme stabilizing term proportional
to e−2, which makes the practical calculations more complicated and introduces the
problem of the choice of the stabilizing term. Thus the results for the total decay
widths and the E2/M1 ratios corresponding to decouplet-to-octet electromagnetic
transitions are obtained in a qualitative agreement with the results obtained using
the constant-cutoff approach to the SU(3) collective model [14] (DCOL), the com-
plete SU(3) collective model [9] (CCOL), the complete CHK bound state soliton
model [10] (CCHK), non-relativistic quark model [11] (NRQM) and the quenched
lattice model [12] (QLM).

For such a simple model with only one arbitrary dimensional constant Fπ, chosen
to be equal to its empirical value Fπ = 186 MeV, we find that the results obtained
here are in good qualitative agreement with those obtained using the complete
CHK model in Ref. [10].
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PRISTUP STALNIM ODREZOM RADIJATIVNIM RASPADIMA HIPERONA
U CHK SU(3)-SOLITONSKOM MODELU

Daje se kratak pregled metode kvantne stabilizacije za SU(2) σ-model, zasno-
van na granici stalnog odreza odrezno-kvantizacijske metode od Balakrishne i
sur., koja izbjegava teškoće s običnim graničnim uvjetima koje su našli Iwasaki
i Ohyama. Razmatraju se radijativni raspadi hiperona pristupom stalnog odreza
modelu vezanog solitona koji su razvili Callan, Hornbostel i Klebanov. Ishodi
za ukupne širine i omjere E2/M1, koji odgovaraju elektromagnetskim prijelaz-
ima dekuplet-oktet, su u kvalitativnom suglasju s ishodima postignutim pristupom
stalnog odreza kolektivnom SU(3) modelu, potpunim Skyrmovim modelima i mod-
elima zasnovanim na kvarkovima.
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