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The present article is the first in a program that aims at generalizing quantum
mechanics by keeping its structure essentially intact, but constructing the Hilbert
space over a new number system much richer than the field of complex numbers.
We call this number system “the Quantionic Algebra”. It is eight dimensional like
the algebra of octonions, but, unlike the latter, it is associative. It is not a division
algebra, but “almost” one (in a sense that will be evident when we come to it). It
enjoys the minimum of properties needed to construct a Hilbert space that admits
quantum-mechanical interpretations (like transition probabilities), and, moreover,
it contains the local Minkowski structure of space-time. Hence, a quantum theory
built over the quantions is inherently relativistic. The algebra of quantions has
been discovered in two steps. The first is a careful analysis of the abstract structure
of quantum mechanics (the first part of the present work), the second is the clas-
sification of all concrete realizations of this abstract structure (several additional
articles). The classification shows that there are only two realizations. One is stan-
dard quantum mechanics, the other its inherently relativistic generalization. The
present article develops the abstract algebra of observables.

PACS numbers: 87.15.Rn, 87.50.-a UDC 535.217, 539.21
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1. Introduction

Following the discovery of non-relativistic quantum mechanics, much effort has
been invested into the search for an encompassing supra-theory that would be
simultaneously quantum mechanical and general relativistic, but a structural uni-
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fication of space-time and quantum theory is still elusive. As for the unifications
provided by quantum field theories, they are not structural in the mathematical
sense. Relying on phenomenology, they adapt quantum theory to particular fields
— as mirrored in expressions like “quantization of ...(whatever field)”. By contrast,
the objective of structural unification is to discover, if it exists, a generalization
of quantum mechanics that would be inherently relativistic. Thus, it is quantum
theory itself that would be generalized — “generalization” being understood in the
following sense: A generalization of an axiomatic theory is a new axiomatic the-
ory which implies the initial one in some carefully defined limit. Such structural
generalizations have already taken place in physics, as illustrated in Fig. 1. The
present work attempts a systematic approach to the last step, “Generalized Q.M.”.
We note that the generalization problem, so understood, is purely mathematical.
It does not aim at incorporating more phenomenology into a theoretical model,
but at discovering new mathematical structures recognizable as quantum mechan-
ics in all essential aspects. If solved, the new theory may or may not be physically
meaningful. To be physical, it must also admit experimentally testable physical
interpretations and agree with observations over a wider range of phenomena than
the original theory.

Classical
mechanics

Special
relativity

Quantum

mechanics

General
relativity

Generalized
QM

Figure 1. The Generalizations of classical mechanics.
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As stated above, we aim at generalizing quantum mechanics while preserving
its essential aspects, but what is considered essential is often a matter of physical
intuition and personal philosophy. In a systematic attempt to eliminate any pre-
conceived ideas one might have about what physics “should be”, part of the present
work (the present paper in totality) is dedicated to the structural analysis of stan-
dard quantum mechanics. Having extracted this mathematical structure, referred
to as “quantal algebra”, what follows is deductive work, which begins with classi-
fication, i.e., the identification of all concrete realizations of this abstract algebra.
Clearly, not much would be achieved if the number of realizations were infinite,
or even large, forcing us to search in a large pool of candidates for those that
might be physically relevant — but it happens that there is only one non-standard
realization, and, unexpectedly, it is relativistic. Thus, our initial objective of con-
structing a structural unification of quantum mechanics and relativity is achieved at
a deeper level than expected. The abstract structure of quantum mechanics implies
the existence of space-time with Minkowski structure, which justifies the terminol-
ogy “inherently relativistic”.

The present multi-part work’s key contributions to the unification problem (de-
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veloped much later in the work) is the discovery1 of a new number system, referred
to as “Quantionic Algebra”, with the following properties:

• It is the only generalization of the field of complex numbers which allows
the construction of a Hilbert space with all properties needed for quantum
mechanical interpretation.

• It is covariant with respect to the Loentz group SO (1, 3), even though this
property is not axiomatically imposed.

• It can be expressed in a formalism well adapted to differential geometry in
curved manifolds, which may be relevant to the vexing problem of quantum
gravitation.

The first point calls for a brief comment, as it may seem puzzling to the reader
acquainted with Hurwitz’s theorem. Among the properties needed for quantum
mechanical interpretation is a positive definite norm, but according to the theorem
in question, the only number systems equipped with a positive definite norm are the
four division algebras, i.e., the real numbers, the complex numbers, the quaternions,
and the octonions — leaving no room for a new normed number system. The
quantionic algebra does not challenge this theorem, but circumvents it in a rather
subtle manner. As we shall see in a much later part of the present work, the vectors
in a properly defined quantionic Hilbert space have a positive definite norm even
though their components don’t — and it is the vectors, not the components, that
must have a norm if the probabilistic interpretation is to be preserved.

This may also be the place for a comment concerning generalizations of quantum
mechanics. As strongly argued by Steven Weinberg [1], it is established common
wisdom, supported also by some theorems, that the Hilbert space structure of
quantum mechanics is so rigid that it cannot be modified, discouraging attempts
at generalization. Our results, derived in later parts of the present work, only
confirm this observation, as our generalization of quantum mechanics preserves the
structure of Hilbert space and its physical interpretations. What is different is the
realization of Hilbert space, which is no longer over the field of complex numbers,
but over a new number system. What may be unexpected, is the existence of a
number system which would modify quantum mechanics without destroying its
essential Hilbert space structure.

Returning from these digressions, we would expect a generalization of quan-
tum mechanics to exist due to the apparent incompleteness of the interconnections
between the basic theories of physics, as illustrated in Fig. 2.

Arrows indicate specializations (transitions to special or limiting cases), while
solid lines connect the various theories to the space-time groups they are compatible
with. As in Fig. 1, classical mechanics appears as a limit of two theories — relativity
and quantum mechanics. It shares with the latter the same space-time group, while

1Whether it is ‘discovery” or “construction” depends on one’s personal philosophy of math-
ematics. The author’s view favors “discovery”, as it is impossible to construct a mathematical
structure that does not exist in principle — and if it does, its “construction” is pre-determined.
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its relation to relativity takes place by way of a contraction of the Poincaré group
to the Galileian group. The physical theories on the two sides of the graph have
been technically complete within their ranges of validity for most of the Twentieth
Century, but their logical disconnectedness is unsatisfactory. It suggests that a
“missing link” remains to be discovered. The figure calls for completion to a lattice
structure, i.e., to a graph that would contain not only a minimally structured
theory at the bottom (classical mechanics), but also a maximally structured one at
the top. Both sides of the graph would then be derived from such a supra-theory,
which, ideally, would also admit gravitation. The new relationships are tentatively
illustrated in Fig. 3.
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group

Galileian
group

Quantum

mechanics

Classical
mechanics

Figure 2. The Current structure of physics.

Our objective being to generalize quantum theory, let us briefly review the
heuristics of our approach. The problem may be stated as follows:

Given two concrete theories (referred to as prototype theories ), construct
a new abstract mathematical theory that encompasses both, and then find all other
concrete theories of the same type, i.e., all realizations of the new abstract structure.
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Figure 3. A new hypothetical model of physics.

A three-step approach to this task is illustrated in Fig. 4. The first step, con-
cept extraction, consists in identifying the mathematical concepts common to the
prototype theories and selecting the ones that are to be built into the foundations
of the abstract theory. The advantage of starting with two prototypes, if available,
is obvious, as this greatly reduces the set of candidate concepts — whatever is not
common to both is considered inessential. The second step consists in structuring
these basic concepts into an abstract mathematical object. If this can be done, the
last step is the classification of concrete realizations. A concrete realization of an
abstract mathematical structure is a mathematical object which exhibits all the
properties of the abstract structure, but is defined in terms of a pre-existing theory
that allows practical computations. Obviously, the prototype theories themselves
are realizations of the abstract theory, but not necessarily the only ones — and it
is among the new ones that one might expect to find a generalization of quantum
theory.
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Figure 4. The generalization procedures

Following the generalization procedures outlined above, our first task is to select
the prototype theories. One of them is quantum mechanics by definition. One more
is needed to limit and guide the concept selection process. Our ultimate objective,
which is the unification of quantum mechanics and relativity, might suggests that
the second theory should be special relativity, but it cannot be, as quantum me-
chanics and relativity refer to very different aspects of physics. The only choice is
classical mechanics. Though a limiting case of quantum mechanics, classical me-
chanics is not a subset of the latter. The two theories being axiomatically unrelated,
they can serve as prototypes without fear of redundancy. Concerning the choice
of formulations, Heisenberg’s picture and Hamilton’s canonical formalism suggest
themselves, as they exhibit the most pronounced structural analogies. As for the
idea of generalizing the complex numbers, it was first suggested by a result obtained
with A. Petersen [2] in the structural formulation of Bohr’s correspondence princi-
ple, where the transition from quantum to classical mechanics may be viewed as a
transition from the field of complex numbers to a nilpotent algebra2. A suggestive

2This takes place in the phase space formulation of quantum mechanics [2–3]. In this formula-

tion, we denote the Poisson bracket as a formal product, ∇, i.e., f∇g
def
= {f, g} , so that its powers,

∇n, are conveniently defined as bilinear differential operators of order 2n. The algebraic structure
of phase space quantum mechanics is then contained in a complex product of phase space func-
tions, f eih∇g. This is the only associative product which can be defined in phase space in addition
to the ordinary product of functions, fg. The correspondence principle may then be viewed either
as a numerical limit, or as a structural deformation. The first view is applicable if the action in the
physical system is large enough for Planck’s constant to be negligible. The complex product then
splits into the two real products that characterize the structure of classical mechanics, namely fg
and {f, g} . This is the historical view of correspondence, but, according to Aage Petersen (oral
communication) Bohr often expressed the opinion that there must be something deeper to this
principle. The second view confirms this opinion, as we can also retrieve the algebra of classical
mechanics by a structural deformation of the product f eih∇g. Indeed, we may take h = 1, and
consider a formal product f eJ∇g. For J = i, we have quantum mechanics, for J nilpotent, i.e.,
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question is now inescapable: If the transition from the field of complex numbers
to a nilpotent algebra effects the structural transition from quantum to classical
mechanics, might there not exist a structurally much richer algebra, D, such that
the transition C → D would lead in the opposite direction, i.e., from quantum me-
chanics to, one might hope, a “covariant quantum theory”? It is to this remark
involving the nilpotent algebra that the present work owes its origin, even though
the idea of generalizing quantum mechanics by substituting a richer structure for
the field of the complex numbers is almost as old as quantum mechanics itself, the
large body of research in this area being well reviewed in several books [4–7]. Our
approach differs from all these previous works in that it does not attempt to gener-
alize quantum mechanics by forcing it into mathematical structures already known
to mathematics. Instead, we assume from the outset that a number system which
would generalize the complex numbers in a manner fully consistent with quantum
mechanics either does not exist, or, if it does, is not known to mathematics —
for, if it were known, its relevance to physics would not have been left unnoticed
for over half a century. Guessing being out of the question, the path we take to
discovering this hypothetical structure is a careful abstract analysis of quantum
mechanics followed by its step-by-step reconstruction. The expectation being that
this process will bring to light some hidden assumptions whose elimination might
open the door to generalization. As our approach takes a new direction starting
from first principles, it is independent of any previous research on unification.

The present paper is dedicated to the construction of the abstract generalization
of quantum mechanics as an algebra of observables. In subsequent parts of the work
we shall develop the abstract theory of states, classify all concrete realizations of the
abstract theory, prove the existence and uniqueness of a generalization of the field of
complex numbers (referred to as the algebra of quantions), study the properties of
this new number system, develop a generalization of Hilbert space by substituting
quantions for complex numbers, etc..

2. The process of generalization

Quantum mechanics is based on a system of postulates which fall under three
headings: Observables — represented by Hermitian operators in a Hilbert space.
States — represented by rays in the same Hilbert space. Probabilities — computed
as norms of scalar products in Hilbert space.

Our ultimate goal is to preserve these postulates in the new theory while mod-

J2 = 0, we retrieve classical mechanics. The relationship between the two interpretations of J

is more transparent in a two-dimensional real representation, where J =

(
0 1
−1 0

)
for the

imaginary element, and J =

(
0 1
0 0

)
for the nilpotent element. This correspondence principle

based on J does not model microscopic physics, but sheds light on the theory by showing that the
algebra of both mechanics can be expressed by a single associative product, f eJ∇g. This product
is based on the number system R ⊕ JR, which is the field C of complex numbers in the quantum
case, and on a nilpotent algebra in the classical case.

FIZIKA B 10 (2001) 3, 113–138 119



grgin: inherently relativistic quantum theory. part i . . .

ifying only the realization of Hilbert space by substituting a new number system
for the field of complex numbers. To discover this hypothetical number system, we
first rewrite as much as possible of quantum mechanics in a form that involves no
complex numbers, and then re-introduce the role they play in the theory by way of
an inequivalent construction. To this end, we first note that while the components
of rays are complex numbers by definition, Hermitian operators are real objects. If,
as an intermediate step, the states were also formulated as real objects, we would
be much closer to our goal of eliminating the complex numbers from the theory.
The last step would be a process of abstraction by which the internal representation
of objects whose matrix components are still complex numbers would be ignored,
and only relationships considered essential.

A formulation of quantum mechanics in which states are also observables, hence
real objects, does in fact exist. It is in terms of density matrices. Its postulates make
no explicit reference to Hilbert space, and, in addition, are analogous to those of
canonical classical mechanics. Grouped as above and comparatively listed, they
are:

1) (B1): Observables.

QM: Represented by Hermitian operators.
CM: Represented by real functions over phase space.

1) (B2): States.

QM: Represented by idempotent Hermitian operators of unit trace (density
matrices).

CM: Represented by probability densities over phase space (the Dirac function
in the non-statistical theory).

1) (B3): Transition probabilities.

QM: Computed as traces of products of observables and states.
CM: Computed as integrals of products of observables and states.
Having selected the prototype theories of mechanics in Hamilton’s and Heisen-

berg’s forms, the first step, as stated in the introduction, is to extract the set of
common concepts and properties. We shall see that this set is categorical, i.e., nei-
ther too small (insufficient) nor too large (inconsistent), but “just right” to enable
us to construct a unique abstract formulation of both mechanics. This is not sur-
prising if one notes that the realizations of these theories in terms of Hermitian
matrices on the one hand, and of real functions over phase space on the other, have
many properties in common even though they are mathematically very far apart. It
is virtually inconceivable that structures formally so distant from each other could
be so similar by some inconsequential coincidence.
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2.1. Concept extraction

The following is a compilation of the properties we can readily identify as com-
mon to real functions over phase space and to Hermitian matrices.

• Linearity. The set of phase space functions and the set of Hermitian matrices,
i.e., the observables in both mechanics, form linear spaces over the field of
real numbers.

• Reality. In both theories, we distinguish three ways in which reality manifests
itself: (1) The reality of the coefficients over which the linear space of observ-
ables is built. (2) The reality of the values associated to the observables (e.g.,
the eigenvalues of Hermitian operators are real). (3) The “intrinsic” reality of
the observables themselves (e.g., Hermitian matrices are self-adjoint). These
manifestations of reality coalesce into a single one in classical mechanics, and
are mutually related in quantum mechanics. As we don’t know whether they
will be related or independent in a more general theory, we initially view them
as independent.

• Existence of a product. Phase space functions may be mutually multiplied to
yield new phase space function, while Hermitian matrices yield new Hermitian
matrices by the symmetric product. Hence, in both theories, the linear spaces
of observables are equipped with a symmetric (i.e., commutative) product.

• Automorphisms. The canonical and unitary transformations are automor-
phisms of the products mentioned above.

• Reversibility. In “pure” (as opposed to statistical) classical and quantum
mechanics there are no irreversible automorphisms (no entropy). Thus, the
automorphisms form a group.

• Inner derivations. Derivations define the infinitesimal automorphisms. In
both theories, all derivations are inner, being defined by the observables them-
selves — either by way of the Poisson bracket, or by the commutator. This
property is referred to as “the equivalence of observables and generators”.

• Composition. Instances of both theories compose without restrictions, allow-
ing physical systems to interact. Under composition, the degrees of freedom
are additive, and the canonical and unitary structures are preserved.

The large number and generality of these concepts strongly suggests that it
should be possible to formulate them within an abstract algebraic structure free of
reference to Hilbert space or phase space — which is the next step, referred to as
“structuring”.
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2.2. Structuring

The formulation of any abstract theory begins with the selection of undefined
concepts, or primitives — objects considered indecomposable into more elementary
concepts. We take as primitive only the concept of observable, leaving the door
open to additional ones if necessary. Abstract observables, denoted by small Latin
letters, f, g, h, ..., are internally unstructured by definition (they are neither phase
space functions not operators), and the set of observables, denoted by O, is also
initially unstructured. By going through the list of previously extracted common
concepts, we shall add structure to O step by step in the next subsections

2.3. Linearity

In both classical and quantum mechanics, the observables form a real linear
space: linear combinations of real functions are real functions, and linear combi-
nations of Hermitian operators are Hermitian, if and only if, in both cases, the
coefficients are real. Hence, real linearity is the first property we take over as es-
sential:

(f, g ∈ O) & (λ, µ ∈ R) ⇒ (h = λf + µg ∈ O) .

2.4. The symmetric product

The observables of classical mechanics, also called dynamical variables, are the
C∞ functions over phase space. This class of functions is stable under the ordinary
product, which is commutative and associative. In quantum mechanics, the asso-
ciative product AB of Hermitian matrices is not Hermitian, and, consequently, is
not a candidate for abstraction, but the Jordan product 1

2 (AB + BA) is Hermitian
and symmetric (though not associative). Hence, what is common to both mechanics
is a symmetric product — which makes it an essential concept.

We thus postulate the existence in the abstract theory of a symmetric product,
which we denote by σ. For f, g ∈ O we write h = fσg ∈ O. As stated above, this
product satisfies the identity

fσg = gσf, (1)

but no assumptions are made concerning its associativity. The associator, defined
as the trilinear map

[f, g, h] def= (fσg)σh − fσ (gσh) , (2)

measures the extent to which associativity is violated. As it vanishes in classical,
but not in quantum mechanics, we introduce the following definition:

Definition 1 The classical criterion : The identity [f, g, h] = 0 for all
f, g, h ∈ O characterizes abstract classical mechanics.

We now require that the operations introduced so far (real linearity and the
commutative σ-product) be mutually compatible, meaning that the order in which
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they are performed is to be irrelevant. This implies the standard distribution laws
of algebra:

(f + g) σh = fσh + gσh, (3)

(λf) σg = λ (fσg) , (4)

(λ + µ) f = λf + µf. (5)

Hence, the abstract structure {O, σ} is a real symmetric algebra.
Another property common to both mechanics is the existence of a unit (the

real unit and the unit matrix respectively). Hence, we postulate the existence of an
observable, e ∈ O, such that

e σf = f (6)

for all f ∈ O. We call e the abstract unit. Thus, the algebra of observables,
{O, σ, e} , is an algebra with a unit.

2.5. Reality of spectra

For every element f of an algebra with a unit, the spectrum, Sp (f) , is defined
as the set of constants λ for which the element (f − λ e) has no inverse. Clearly,
for (f − λ e) to be an element of the algebra, the constant λ must be an element
of the field over which the underlying linear space of the algebra is constructed. In
our case, the algebra is {O, σ, e} and the field is R. Hence, the spectrum Sp (f) of
any observable f ∈ O is the set of real numbers λ for which no unique observable
g ∈ O exists such that the relation

(f − λ e) σg = e

would be satisfied. This is guaranteed in classical and quantum mechanics by the
realizations of observables as real functions or as Hermitian operators. Since we are
ultimately interested in realizations of the algebra of observables by concrete objects
other than standard Hermitian matrices, it is conceivable that the reality of spectra
might not be an intrinsic property of these objects. Hence, we are postulating the
reality of the spectrum.

2.6. Reality of observables

This additional concept of reality is not to be confused with the reality of
the field, postulated earlier, even though it implies it. In classical mechanics, it
corresponds to the observables being real functions, f̄(x, p) = f(x, p); in quantum
mechanics, to their being self-adjoint operators, F † = F. Thus, it expresses an
internal property of the observables (how they are individually constructed), while
the reality of the field expresses an external property (how they combine to form
new observables).
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To formulate the concept of reality for the observables in the abstract algebra
{O, σ, α} , we may use the general definition of conjugate elements, adapting it to
this algebra.

To this end, let {O′, σ, e} denote some extension of the algebra {O, σ, e} , where
O′ generalizes the concept of complexification. For a set of elements f1, f2, . . . , fn ∈
O′, we say that they are mutually conjugate if

f1 + f2 + · · · + fn ∈ O, (7)

(f1σf2) σ · · ·σfn ∈ O, (8)

while fi /∈ O for all i = 1 to n. This concept is a direct generalization of conjugation
in the field of complex numbers. Indeed, if we take O = R and O′ = C, then the
conditions f1 + f2 ∈ R, f1f2 ∈ R, and f1, f2 /∈ R, imply f1, f2 ∈ C. In particular, it
follows that f2 = f∗

1 .

We may now formulate the abstract definition of reality for abstract observables
as the requirement that all relations of the type 7 and 8 should have solutions
in the space O itself. Like the reality of the spectrum, this concept of reality is
automatically satisfied in classical and quantum mechanics, but might not be in a
more general theory — which is why we postulate it.

2.7. Automorphisms

The invariance groups of classical and quantum mechanics are, respectively,
the groups of canonical and of unitary transformations. Both are the groups of
automorphisms of the products of observables. But this property need not be in-
troduced into the abstract theory by an explicit conceptualization process, as it
is mathematically implied. Indeed, given an abstract algebra {O, σ, e}, its group
of automorphisms is uniquely defined if O is finite-dimensional, which is all we
need initially. This group is the set of all mappings T : O → O which preserve
linearity and the product σ, i.e., they are the mappings which commute with these
operations. Formally, the commutativity conditions reads

T (λf + µg) = λT (f) + µT (g) (9)

T (fσg) = T (f) σT (g) (10)

for all λ, µ ∈ R, and all f, g ∈ O. From the last relation follows the invariance of
the unit,

T (e) = e. (11)

Hence, there is no need to rely on the canonical and unitary groups as phys-
ical prototypes, since the group of abstract automorphisms is distinguished as an
implied structure once the algebra {O, σ, e} has been postulated to exist.
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An infinitesimal automorphism is of the form

T = I + εDT . (12)

Substitution of this expression into relation (10) yields the Leibnitz derivation rule
for the linear operator DT :

DT (fσg) = (DT f) σg + fσ (DT g) . (13)

From relations (11) and (12) follows

DT e = 0. (14)

The commutator of derivation operators,

[DT , DS ] = DT DS − DSDT , (15)

is a derivation operator, i.e.,

[DT , DS ] (fσg) = ([DT , DS ] f) σg + fσ ([DT , DS ] g) ,

and satisfies the Jacobi identity

[DT , [DS , DR]] + [DR, [DT , DS ]] + [DS , [DR, DT ]] = 0. (16)

It is thus a Lie product.
The operators DX are the abstract counterparts of the canonical derivation

based on the Poisson bracket, {X, }, and of the unitary derivation based on the
commutator, 1

i [X, ] . We disregard for the time being the fact that these operators
are tied to an additional characteristic property of both mechanics (the equivalence
of observables and generators), which will be discussed separately. Though abstract,
the operators DX are not structurally irreducible. They contain three structures
which can be dissociated: (a) they form a linear space, (b) they compose by way
of a product (the commutator), and (c) they act as linear operators on the space
of observables. We shall discuss each in turn.

2.8. The linear space of generators

We shall now dissociate the three structures mentioned above and re-introduce
them explicitly.

Linearity. Extracting linearity first, we introduce an abstract real linear space,
L, isomorphic with the linear space of differential operators DX . We denote the ele-
ments of L by capital Latin letters, F,G, ... ∈ L. Like the abstract observables, they
are to be viewed just as points in a linear space, devoid of any internal structure.
Specifically, they are not operators. We refer to them as (abstract) generators.
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The operator structure. We explicitly restore the operator property to the
abstract generators by introducing a hybrid product which we denote by γ. This
product is a bilinear function from generator-observable pairs into observables:

γ : L ×O → O.

With T ∈ L and f ∈ O, we write it as a mixed product, Tγf ∈ O. Dropping the
observable on which it acts, the relationship between a derivation operator DF and
its abstract representant F is

DF ↔ Fγ. (17)

Substitution of this expression into the Leibnitz rule (13) yields the distribution
law for γ with respect to σ :

Hγ (fσg) = (Hγf) σg + fσ (Hγg) , (18)

while relations (14) and (17) yield

Fγe = 0 . (19)

The Lie structure. Since the commutator [DF , DG] of derivation operators is
a derivation operator and a Lie product, the equivalent form [Fγ,Gγ] has the same
properties — which implies that the linear space L is equipped with a Lie product.
We denote this new product by ω. Its defining identity is

(FωG) γ = [Fγ,Gγ] (20)

Hence, the linear space L supports an abstract Lie algebra {L, ω}. In other words,
the product ω satisfies the antisymmetry and Jacobi identities

FωG + GωF = 0 (21)

(FωG)ωH + (HωF )ωG + (GωH) ωF = 0 (22)

in addition to distribution rules of the form (3) to (5), in which the product σ is to
be replaced by the product ω.

Collecting all abstract objects introduced so far, we denote the composite alge-
braic structure by Q:

Q = {O,L, σ, ω, γ, e} .

As this is an intermediate object, soon to be further specialized, there is no need
to name it.
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2.9. Composability

Another property implicit in the realizations of the two mechanics allows the
construction of larger systems from smaller ones — the concept of system “size”
being defined in classical mechanics as the number of degrees of freedom (half the
dimension of phase space). We refer to the property in question as composability.
To discuss the idea, we consider two physical systems in both mechanics, and de-
termine from these examples which mathematical properties are needed to support
interactions.

In classical mechanics, a system is represented by its Hamiltonian and vari-
ous symmetry groups, but we don’t need such a detailed specification to discuss
composability. All we need is the fact that Hamiltonians are dynamical variables.
Hence, the mathematics needed to represent a physical system is its phase space
and the linear space of observables, i.e., of real C∞ functions over it.

Let us now consider two arbitrary mechanical systems, each with its phase space
and linear space of observables. For these systems to be able to interact, there must
exist a composite phase space and a linear space of composite observables. This
composite structure is obtained by combining the two phase spaces into a larger one
by a direct sum — which is technically trivial because the symplectic structure of
phase space allows unrestricted addition of degrees of freedom. The new observables
are then C∞ functions over the larger phase space.

To reformulate this rule in terms of observables alone, without making explicit
reference to phase space (as the latter is not a common concept), we note that
a composite observable can be viewed as a (possibly infinite) sum of products of
component observables. Thus, given a C∞ composite function h (x1, p1, x2, p2), one
can find two sequences of C∞ functions, fk (x1, p1), gk (x2, p2), such that

h (x1, p1, x2, p2) =
∑

k

fk (x1, p1) gk (x2, p2) .

Hence, disregarding the technically fine points of convergence — which are irrele-
vant since the example is used only for heuristic purposes — we make note of the
fact that the underlying linear spaces of observables compose by way of the tensor
product.

A similar conclusion holds in quantum mechanics, where each system is repre-
sented by its Hilbert space and by the associated linear space of Hermitian oper-
ators — the Hamiltonian being irrelevant to this discussion as well. Disregarding
statistics at this point (i.e., considering only non-identical systems), the composite
structure is obtained by taking the tensor product of the Hilbert spaces, which
then implies that the new space of observables is the tensor product of the com-
ponent spaces of observables. Just as the tensor product of classical observables is
compatible with the symplectic structure of phase space, so is the tensor product
of Hermitian matrices compatible with Hermiticity. Indeed, if we take an arbitrary
n-dimensional Hermitian matrix and multiply each of its components by an arbi-
trary m-dimensional Hermitian matrix, the resulting nm-dimensional matrix is also
Hermitian.
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Hence, any two instances of classical mechanics can compose to yield a new one,
and the same is true for any two instances of quantum mechanics. These theories
do not cross-compose, however, which is consistent with the non-existence of hybrid
classical-quantum theories.

Initially disregarding the insight that composition takes place by way of tensor
products, all we need to extract from these observations is the conclusion that
composition exists. We may also note that it takes place within composition classes
— classical and quantum mechanics being two such classes. The reason it is not
necessary to extract from the examples just considered the postulate that abstract
composition is based on the tensor product is that it cannot be otherwise, since
the linearity of the spaces O and L is to be preserved by composition, as is the
bilinearity of the products σ, ω and γ.

On the basis of these considerations, we expect all objects Q to fall into com-
position classes (the classical and quantum theories being two prototype classes).
We denote the composition operation by “©”. Thus, if {T,©} is a composition
class, then, for any two objects Q1,Q2 ∈ T, we postulate the existence of a third
object, Q12 ∈ T, which is their composite:

Q12 = Q1 ©Q2. (23)

Writing

Q1 = {O1,L1, σ1, ω1, γ1} , (24)

Q2 = {O2,L2, σ2, ω2, γ2} , (25)

Q12 = {O12,L12, σ12, ω12, γ12} , (26)

we see that the symbol © represents a set of five still unknown mappings, which
are to define:

• the two linear spaces O12 and L12 in term of the spaces O1, L1, O2, L2, and

• the three products σ12, ω12, γ12 as functions of the six products σ1, ω1, γ1;
σ2, ω2, γ2.

2.10. Grading

By integration, relations (12) and (17) yield finite one-parametric motions of
the type

exp (τTγ) =
∞∑

k=0

τk

k!
(Tγ)k

.

The parameter τ has no intrinsic physical meaning, so that its scale and orientation
are arbitrary. Considering the latter, we note that the parameter reversal τ →
−τ is equivalent to the generator reversal T → −T . This is consistent with the
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reversibility property of the automorphisms. Generalizing to a simultaneous reversal
of all generators in a object Q, we define the reversal operator R in Q by the
relations

R|O = I, (27)

R|L = −I, (28)

which mean that every observable remains invariant and every generator changes
sign. For this mapping to be a symmetry of the theory, it must be compatible with
the composition operation ©, which implies that it is to be performed simulta-
neously on all objects Q in a composition class. It thus follows that R is a class
operator, in the sense that it leaves composition classes invariant.

An elegant way of formulating this conclusion is with the concept of “grading”.
In general, a linear space is said to be graded if it is to be viewed as a direct sum of
linear subspaces, and if each of these subspaces is associated to an element of some
Abelian group G. The concept of grading is useful if tensor products or algebraic
products are relevant (both are in the present application) and if the factors are to
carry into the products some “memory” of their origin3. This memory is supplied
by the elements of the group G.

To simplify the object Q = {O,L, σ, ω, γ, e} one might consider taking the
direct sum of the spaces O and L and work with a single linear space, but this
would irretrievably mix the observables and the generators. To have a reversible
mixing, these objects must carry some memory of their origin, which points to
grading. To this end, we take a group with at least two elements, G = {I,$, . . .} ,
and define a new linear space B as the direct sum

B def= IO ⊕ $L. (29)

(The other option, $O⊕IL, is not possible, since the space O has an algebraic unit,
e, which must go with the group unit I for compatibility). The reversal operator
can now be transferred from the spaces O,L to the group G by expressing the
relations (27), (28) as

R {I,$, . . .} = {I,−$, . . .} , (30)

which enables us to retrieve the spaces O,L from the space B. Hence, the algebraic
object Q may also be written as

Q = {B,R, σ, ω, γ, e} .

This form has the advantage of being based on a single linear underlying space, B,
but that space is graded. The connection between the two equivalent forms of Q
is established by the involution R, which is a structural element. While it may be
obvious that the group G consists of only two element, this will soon be implied by
composability.

3As an example of such “memory”, consider the LTM dimensions of mechanics: to every
mechanical object is associated a dimension LαT βMγ , where α, β, γ ∈ Z, and Z is the additive
group of integers, so that the Abelian group in question is G = Z3 .
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2.11. Inner derivations

In both classical and quantum mechanics, the observables play an additional
role — they generate all the infinitesimal automorphisms of the algebraic product.
This is equivalent to saying that all derivations are inner. In classical mechanics,
this takes place by way of the Poisson bracket,

f → f + ε {g, f} ≡ f + ε

(
∂g

∂p

∂f

∂x
− ∂g

∂x

∂f

∂p

)
,

in quantum mechanics, by way of the commutator,

F → F + ε
1
i

[G,F ] ≡ F − εi (GF − FG) .

This double role of the observables is referred to as the equivalence of observables
and generators.

The abstract model for classical mechanics is L = O, where the products γ and
ω coincide and are realized by the Poisson bracket. In quantum mechanics there
are two choices. One could take L = O, and interpret γ and ω as the commuta-
tor divided by the imaginary unit, or, alternatively, one could take L =iO (the
generators would then be anti-Hermitian matrices), and interpret γ and ω as the
commutator. We shall initially take the latter viewpoint. Note: The identification
of the spaces O and L adjoins the unit e to the Lie algebra, where it plays the role
of an inconsequential central element, i.e., eωL = {0}.

It is extremely suggestive that the equivalence of observables and generators
strongly characterizes mechanics (both classical and quantum). Indeed, it seems
impossible to find a non-trivial analogy anywhere else in mathematics — with one
apparent exception: there seems to be a non-mechanical counter-example in three-
dimensional Euclidean geometry. To construct it, let the space O be defined as the
space of Euclidean vectors. The space L would then consist of the generators of the
rotation group, an infinitesimal rotation being written in the form

~r → ~r + ε~g × ~r.

The space O (of polar vectors ~r) and the space L (of axial vectors ~g) are both 3-
dimensional linear spaces. Hence, they are isomorphic if we fix the orientation, thus
eliminating the distinction between polar and axial vectors. Yet, notwithstanding
appearances, this is not a true counter-example due to the local isomorphism be-
tween rotations and spin, SO (3) v SU (2) — all unitary groups being structurally
quantum mechanical4.

4In Part III of this work, the exhaustive classification of the realizations of quantal algebra will
yield the group SO (6) as a second counter-example, but again, only apparently so, due to the
local isomorphism SO (6) ∼ SU (4) under a fixed orientation.
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3. The Quantal Algebra

The set of abstract concepts extracted from classical and quantum mechanics
and related to postulate (B1) is now to be worked into an axiomatic algebraic
structure (the quantal algebra). The first step has already been taken with the
definition of the object

Q = {O,L, σ, ω, γ, e} = {B,R, σ, ω, γ, e} ,

which axiomatically incorporates the real linearity of the set of observables, the
existence of a symmetric product, and the reversibility of all automorphisms of
this product. Two constructive properties remain to be incorporated: Composabil-
ity, and the equivalence of observables and generators (the reality conditions are
restrictive, not constructive). We take the former as axiomatic, as it is strictly con-
ceptual. Thus, we postulate the possibility of unrestricted pairwise composition
of all instances of objects Q within each composition class {T,©}, the composite
objects being new instances of the same structure.

Referring to relations (23) through (26), the preservation of linearity under com-
position implies that the spaces O12 and L12 are to be defined by tensor products.
This requirement is more naturally expressed in terms of single graded spaces, Bi ,
than in terms of pairs of spaces, Oi , Lj , as

{Bij ,R, . . .} = {Bi ⊗ Bj ,R, . . .} ,

which implies

Oij = (Oi ⊗Oj ) ⊕ $2 (Li ⊗ Lj ) , (31)

Lij = (Oi ⊗ Lj ) ⊕ (Li ⊗Oj ) . (32)

Hence, $2 = I, so that G = {I,$} is a group of order two, as expected. But the
expressions (31) and (32) are not bilinear if the spaces Oi and Li are mutually
unrelated. For a linear transformation in Oi to propagate to the composite space
Oij it must also propagate to Li , and vice-versa. Hence, linearity-preserving com-
position requires that linear transformations in Oi act simultaneously in Li , and
vice-versa, which implies that the spaces Oi and Li are rigidly related by a fixed
linear isomorphism. Let’s denote such an isomorphism by Li . Thus,

Li = LiOi . (33)

As we need only finite dimensional spaces, this implies

dim (Oi) = dim (Li) .

We recognize in this conclusion the equivalence of observables and generators
— which thus appears as a theorem, and need not be postulated. We shall have
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to find all inequivalent solutions for the isomorphism L, but we first note that its
existence alone simplifies and tightens the structure of the object Q. Indeed, the
elimination of the space L transfers the products ω and γ to the space O.

We first transfer the Lie product H = FωG from L to O by the substitutions
H = Lh, F = Lf, G = Lg, which yield

Lh = (Lf) ω (Lg) .

This relation implies that h is a bilinear function of f and g, i.e., it is a product in
the space of observables. We denote it by α, its defining identity being

L (fαg) ≡ (Lf) ω (Lg) . (34)

The space of observables is now equipped with two algebraic products, {O, σ, α, e}.
Relations (21), (22) and (19) imply that the structure {O, α, e} is also a Lie algebra,
the unit e being a central element,

fαg + gαf = 0, (35)

(fαg) αh + (hαf) αg + (gαh) αf = 0, (36)

fαe = 0. (37)

We next transfer the product γ from L×O to O×O. Denoting the new product
by γ′, its defining identity is

Hγf = (Lh) γf ≡ hγ′f.

Since the product α is structural, it must be preserved by the already introduced
group of isomorphisms of the product σ, which implies that the operator Hγ is a
derivation, i.e., it satisfies a Leibnitz identity with respect to α. In terms of γ′,

hγ′ (fαg) = (hγ′f) αg + fα (hγ′g) ,

but this is the same relation as the Jacobi identity (36) if γ′ is proportional to α.
Proportionality factors being irrelevant, it follows that γ′ = α. Finally, the Leibnitz
identity (18) becomes

hα (fσg) = (hαf) σg + fσ (hαg) . (38)

This completes the transfer of the algebraic products from the two spaces O and
L to the single space O. The object Q is now defined as a structure {O, σ, α, e,L}
whose two products satisfy the identities (35) to (38), and all of whose instances
fall into one or more composition classes, {T,©} — the composition of the space
of observables being defined by the tensor product

Oij = Oi ⊗Oj . (39)
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The next task is to find all solutions for the operator L, which is the only remaining
unknown in the object Q.

From the expressions (31), (32), (33), (39) and $2 = I, one obtains

Oij = Oij ⊕ (Li ⊗ Lj )Oij

LijOij = (Oi ⊗ LjOj ) ⊕ (LiOi ⊗Oj )

= (Ii ⊗ Lj )Oij ⊕ (Li ⊗ Ij )Oij .

Since the indices i and j label arbitrary objects Qi ∈ T, it follows from these
identities that the operators Li are proportional to the unit matrix,

Li = IiĴ , (40)

where Ĵ is a universal operator — in the sense that it acts in the same way on all
observables in all objects in the composition class T (multiplication by a constant
being such an operator). Its square is equivalent to multiplication by a real number,

Ĵ2 = −a, (41)

where a ∈ R, the minus sign being conventional.
We note that if the constant a does not vanish, it can be normalized to unit

absolute value by simultaneously re-scaling Ĵ and the generators:

Ĵ → Ĵ/
√
|a|,

Li →
√
|a|Li .

Hence, a has only three inequivalent values,

a ∈ {+1, 0,−1} . (42)

In the computations which follow, we use the notations fi, gi, ... ∈ Oi , fi ⊗ fj ∈
Oij , etc. Then, by relations (31), (34), (40) and (41), we have

(fσg)ij = fijσijgij

= (fi ⊗ fj) σij (gi ⊗ gj)

= (fσg)i ⊗ (fσg)j + a (fαg)i ⊗ (fαg)j . (43)

Similarly, for the product alpha in the composite algebra we get

(fαg)ij = fijαijgij

= (fi ⊗ fj) αij (gi ⊗ gj)

= (fσg)i ⊗ (fαg)j + (fαg)i ⊗ (fσg)j . (44)
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The symmetry conditions (1) and the antisymmetry condition (35) in the com-
posite algebra Oij are easily verified. Indeed, we note that the expression (43) is
symmetric and the expression (44) antisymmetric with respect to the exchange
f ↔ g simultaneously performed in both Oi and Oj . One also easily verifies the
identities fijσijeij = fij and fijαijeij = 0.

The relations (43) and (44) give the general expressions for the sigma and alpha
products in the quantal algebra Qij as functions of these products in the component
algebras Qi , Qj , but these expressions still have to satisfy the Jacobi and Leibnitz
identities. We impose these conditions in turn.

The Leibnitz condition in the composite algebra reads

0 = − (hi ⊗ hj) αij [(fi ⊗ fj) σij (gi ⊗ gj)]

+ [(hi ⊗ hj) αij (fi ⊗ fj)] σij (gi ⊗ gj)

+ (fi ⊗ fj) σij [(hi ⊗ hj) αij (gi ⊗ gj)] .

The algebraic manipulations needed to transform this identity into a simpler one
consist of three steps:

1) Substitute into this relation the expressions for σij and αij given by relations
(43) and (44). This yields

0 = − (hσ (fσg))i ⊗ (hα (fσg))j − (hα (fσg))i ⊗ (hσ (fσg))j

+a (hσ (fαg))i ⊗ (hα (fαg))j + a (hα (fαg))i ⊗ (hσ (fαg))j

+((hσf)σg)i ⊗ ((hαf) σg)j − a ((hσf) αg)i ⊗ ((hαf) αg)j

+((hαf) σg)i ⊗ ((hσf)σg)j − a ((hαf) αg)i ⊗ ((hσf)αg)j

+(fσ (hσg))i ⊗ (fσ (hαg))j − a (fα (hσg))i ⊗ (fα (hαg))j

+(fσ (hαg))i ⊗ (fσ (hσg))j − a (fα (hαg))i ⊗ (fα (hσg))j .

2) Using the Leibnitz identity, expand all terms of the form xα (yσz) . This
leaves mixed product expressions with the products α only inside the inner
parentheses.

3) Extract all factors of the form (xαy)σz. Collecting the trilinear sigma prod-
ucts into associators, as defined by relation (2), and using the Jacobi identity,
one obtains
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0 = ((hαf) σg)i ⊗ {[h, f, g] − afα (gαh)}j

+((hαg) σf)i ⊗ {[h, g, f ] − agα (fαh)}j

+ {[h, f, g] − afα (gαh)}i ⊗ ((hαf) σg)j

+ {[h, g, f ] − agα (fαh)}i ⊗ ((hαg) σf)j .

This is still a two-space relation, as it mixes the spaces Oi and Oj . To reduce it to
an algebraic identity in a single space, we take its cyclic sum with respect to the
variables fi, gi, hi. This eliminates the third and fourth terms (due to the Jacobi
identity and to the fact that the cyclic sum of the associator vanishes identically)
and consolidates the first two terms into a single tensor product:

0 =


 ∑

cyclic

((hαg)σf)i


 ⊗

{[h, f, g] − afα (gαh) − [h, g, f ] + agα (fαh)}j .

Obviously, one of the factors must vanish identically. It cannot be the first one, as
the special case of f = e would imply hαg = 0 for all h and all g, trivializing the
solution. Hence, it is the second term which vanishes for all j. We thus have

[h, f, g] − [h, g, f ] = a [fα (gαh) − gα (fαh)] .

This is a single-space identity, as desired, but it can be further simplified. Using the
Jacobi identity and expanding the associators using the definition (2), this relation
simplifies to

[f, h, g] = ahα (gαf) . (45)

This identity characterizes mechanics, both classical (a = 0) and quantum (a /=0).
We refer to it as the association identity.

The Jacobi identity still remains to be imposed or verified. Expanding one term
in equation (36), we get

[(fi ⊗ fj) αij (gi ⊗ gj)] αij (hi ⊗ hj)

=
[
(fσg)i ⊗ (fαg)j + (fαg)i ⊗ (fσg)j

]
αij (hi ⊗ hj)

= [(fσg)σh]i ⊗ [(fαg) αh]j + [(fσg)αh]i ⊗ [(fαg) σh]j

+ [(fαg) σh]i ⊗ [(fσg) αh]j + [(fαg) αh]i ⊗ [(fσg)σh]j .

By straightforward algebraic manipulations using the three identities (Jacobi, Leib-
nitz and association), one verifies that the cyclic sum of the first term on the right
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hand side vanishes, and so does the fourth. The cyclic sum of the second and third
terms taken together vanishes by the Jacobi and Leibnitz identities alone. Hence,
the Jacobi identity is satisfied without implying new conditions. The structure Q
common to both mechanics is now fully determined. We call it a quantal alge-
bra. While a = 0 characterizes quantum mechanics, it remains to be determined
whether a = 1 or a = −1 characterizes quantum mechanics, and hence its general-
ization. To this end, it suffices to compute the two sides of the association identity
for observables represented by Hermitian operators, where fσg = 1

2 (fg + gf) , and
fαg = 1

2i (fg − gf) . For the associator we get

4 [f, g, h] = (fg + gf)h + h (fg + gf) − f (gh + hg) − (gh + hg) f

= fgh + gfh + hfg + hgf − fgh − fhg − ghf − hgf

= gfh + hfg − fhg − ghf.

Similarly, for the right hand side of relation (45) we get

4gα (hαf) = − [g (hf − fh) − (hf − fh) g]

= −ghf + gfh + hfg − fhg.

Hence
[f, g, h] = gα (hαf) ,

which implies that the parameter value a = 1 in (45) characterizes quantum me-
chanics. Thus, there are two composition classes, T0 (for a = 0) and T1 (for a = 1).

We can now formulate the definition of a quantal algebra as a real structure
independent of the still unknown operator Ĵ .

Definition 2 A quantal algebra : Q = {O, σ, α, e, a}, where a ∈ {1, 0} , is a
real linear space O equipped with two algebraic products which satisfy the following
conditions:

(a) The substructure {O, σ, e} is a symmetric algebra with a unit, (1), (6).
(b) The spectrum of every element of O is real.
(c) The substructure {O, α, e} is a Lie algebra, (35), (36).
(d) The Lie product, α, is a derivation with respect to the product σ, i.e., the

two products are related by the Leibnitz identity (38).
(e) The two products are also related by the association identity (45), where a

(= 0 or 1) is the composition class parameter.
To put these results in perspective we briefly review their derivation:
(1) The subalgebra {O, σ, e} is axiomatic, having been directly extracted from

classical and quantum mechanics.
(2) The composability requirement is also axiomatic, but has the flavour of a

general principle. It can be viewed as a meta-postulate, as it does not specify a
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substructure for the quantal algebra, but states that, whatever that algebra may
be, it must be such that pairwise composition be possible.

(3) All other substructures of the quantal algebra, i.e., the Lie algebra and the
Leibnitz and association identities, are derived concepts and consequences of these
two axioms.

Hence, keeping these points in mind, the definition (2) can be compacted to a
simple statement: A quantal algebra is a composable real commutative algebra.

The comparative study of classical and quantum mechanics having led to the
development of the quantal algebra, we no longer need to refer to either original
theory. The primary object of study in the sequel will be the composition class
T1, but we shall remain aware of T0 as a limiting case. We may thus impose on
the quantal algebra additional restrictions characteristic of quantum mechanics (in
addition to a = 1). Thus, noting that the unitary groups are semi-simple, while the
canonical groups are not, we shall be primarily concerned with semi-simple quantal
algebras.

Definition 3 A semi − simple quantal algebra {O, σ, α, e, a} is a quantal
algebra whose Lie subalgebra {O, α} is semi-simple.

The value of this restriction is obvious: it puts at our disposal Cartan’s structure
theory of semi-simple Lie groups — even though this theory remains to be extended
to include the product sigma.

This completes the construction of the real abstract structure of mechanics for-
mulated in the definition (3). The operator Ĵ plays no explicit role in this definition
because it is a complexification unit. This is obvious from relation (41) for quan-
tum mechanics, i.e., for a = 1, since the solution for Ĵ is then multiplication by
the imaginary unit i. We shall come back to Ĵ in a later part of the present work,
where we study the complexification of the quantal algebra.
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SUŠTINSKI RELATIVISTIČKA KVANTNA TEORIJA
I Dio. ALGEBRA OPSERVABLI

Ovo je prvi članak programa kojim se želi poopćiti kvantna mehanika zadržavajući
njenu strukturu u biti nedirnutu, ali razvijajući Hilbertov prostor na novom sus-
tavu brojeva koji je mnogo bogatiji od polja kompleksnih brojeva. Taj se sustav
naziva “Kvantionskom algebrom”. On je osmerodimenzijski kao i algebra okto-
niona, ali je, za razliku, asocijativan. To nije diobena algebra već je “gotovo” takva
(to u nekom smislu postaje jasno kad proučimo taj dio). Ta algebra ima mini-
malna svojstva potrebna za gradnju Hilbertovog prostora koji omogućuje kvantno-
mehanička tumačenja (poput prijelaznih vjerojatnosti), a, povrh toga, sadrži struk-
turu prostora-vremena Minkowskog. Stoga je kvantna teorija zasnovana na kvan-
tionima suštinski relativistička. Algebra kvantiona je otkrivena u dva koraka. Prvi
je pažljiva analiza apstraktne strukture kvantne mehanike (prvi dio ovog rada),
a drugi je klasifikacija svih stvarnih realizacija te apstraktne strukture (ostatak
ovog rada i niz dodatnih članaka). Klasifikacija pokazuje da postoje samo dvije
realizacije. Jedna je standardna kvantna mehanika, a druga suštinski relativistička
generalizacija. U ovom se radu razvija apstraktna algebra opservabli.
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