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The abstract quantal algebra developed in Part I of the present work describes the
common structure of the two known mechanics, classical and quantum. By itself,
however, it is not physics. It is a mathematical object, or, as some might say, it
is only mathematics, a valid objection if quantal algebra were meant to be an end
in itself, for physics is not in abstract theories, but in their concrete realizations.
Hence, the immediate question is whether at least one new concrete realization of
the quantal algebra exists, for it is among these that a physically valid generalization
of quantum mechanics might be found. The search for all realizations of an abstract
theory is known in mathematics as structure theory, or the classification problem.
Usually difficult, it is relatively easy in our case because the foundations have
already been laid in Cartan’s classification of the semi-simple Lie algebras. Since the
quantal algebra contains a Lie algebra, we only need to adapt the standard work to
our case by imposing some additional conditions. The result is that the semi-simple
quantal algebra has exactly two realizations. Expressed in terms of groups, one is
the infinite family of unitary groups, SU (n) , (i.e., standard quantum mechanics),
the other is an exceptional solution, the group SO (2, 4). Classical mechanics does
not appear as a solution because the requirement of semi-simplicity eliminates the
canonical group. Thus, if quantum mechanics can be generalized, the generalization
is somehow related to the group SO (2, 4) , and as this group contains the relativistic
space-time structure, it appears that an inherently covariant generalization might
be possible.
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1. Introduction

Trusting the constructive power of mathematical abstraction, which, when suc-
cessful, leads to concrete results not envisaged initially, we developed in Part I the
“quantal algebra” {O, σ, α} as an abstraction of a single non-degenerate prototype
(quantum mechanics) and of its degenerate limit (classical mechanics). The restric-
tion to semi-simple quantal algebras eliminates classical mechanics. In the present
chapter we harvest the returns of this abstraction by deriving all concrete real-
izations of semi-simple quantal algebras by an exhaustive classification procedure.
This step is essential, as physics does not reside in abstract structures, but in their
realizations. It is the latter that ultimately allow numerical calculations. We shall
prove that these concrete realizations are standard quantum mechanics and the
exceptional solution SO (2, 4).

The historical precursor of the classification we develop in the present article
is the Killing-Cartan classification of semi-simple Lie algebras — also referred to
as their “structure theory”. It begins with the theorem which states that the in-
decomposable building blocks of all Lie groups are the semi-simple ones, so that
classification applies only to the Lie algebras of the latter. Extending Cartan’s pro-
cedure, we shall similarly classify the realizations of semi-simple quantal algebras.

Since, by definition (Part I, Section 3), a semi-simple quantal algebra {O, σ, α}
contains a semi-simple Lie subalgebra, {O, α} , the approach to classification sug-
gests itself. It consists in expanding Cartan’s structure theory of semi-simple Lie
algebras by including the product σ and its associated Leibnitz and association
identities. To avoid repeatedly referencing equations in Part I, we list here the
identities defining a quantal algebra. They are, respectively, the Jacobi, Leibnitz
and association identities:

(fαg) αh + (gαh)αf + (hαf) αg = 0 (1)

hα (fσg) = (hαf) σg + (hαg)σf (2)

[f, g, h] = agα (hαf) (3)

where

[f, g, h] = (fσg)σh − fσ (gσh)

2. Cartan’s classification

In this section we review the terminology and theorems of Lie algebra which will
be needed for the classification of quantal algebras, formulating them for immediate
applicability in the abstract notation defined in Part I. They can all be found in
standard references, for example [1–3]. Hence, the proofs need not be repeated,
though a few short ones are, as an introduction to work in the notations of abstract
quantal algebra.
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Given a set {ea} of basis vectors in the underlying linear space O of a Lie
algebra {O, α} , the product α is represented by a set of structure constants,
Cc

ab, defined by the relations
eaαeb = Cc

abec , (4)

with the usual summation convention. The antisymmetry and Jacobi identities
imply

Cc
ab + Cc

ba = 0, (5)

Cm
abC

k
cm + Cm

caCk
bm + Cm

bcCk
am = 0. (6)

To every pair of elements f, g ∈ O is associated an invariant scalar. To construct
it, one uses the adjoint operator f̂ defined as

f̂
def= fα .

Given n basis vectors in the Lie algebra O, the operator f̂ is represented by an
n × n real matrix. The product f̂ ĝ of two adjoint operators is to be understood
as the product of the matrices that represent them. The trace of all such products
defines a scalar product in O, referred to as the Cartan metric.

Definition 1 The Cartan metric in O is defined as

(f, g) def= Tr
(
f̂ ĝ

)
. (7)

Clearly, (f, g) = (g, f) , due to the fact that the trace of a product of matrices
is cyclically symmetric.

In terms of structure constants, the corresponding metric tensor reads

gab = Cm
akCk

bm. (8)

One easily verifies that the scalar product (f, g) is invariant under all infinites-
imal transformations, f → f + εhαf, generated by an arbitrary element h ∈ O:

(f + εhαf, g + εhαg) = (f, g) .

Definition 2 A Lie algebra is said to be semi-simple if it contains no subalgebra
A ∈ O such that AαA = {0} and AαO ⊆ A..

Theorem 1 (Cartan) A Lie algebra is semi-simple if and only if its Cartan metric
is non-singular, i.e., if

det (gAB) /= 0. (9)
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The concept that plays a key role in the classification of semi-simple Lie algebras
is that of a maximal Abelian subalgebra, also called a Cartan subalgebra. It is
unique in the following sense:

Theorem 2 (Cartan) All maximal Abelian subalgebras of a semi-simple Lie algebra
are mutually isomorphic.

The practical implication of this theorem is that one can select an arbitrary
Cartan subalgebra to develop the classification procedure, knowing that the con-
clusions, structurally speaking, are independent of the selection.

If one denotes a Cartan subalgebra by O0 and its complement by O1, the linear
space of observables consists of three parts,

O = O0 ⊕O1 ⊕ eR.

The dimension of the Cartan subalgebra, l = dim (O′) , is referred to as the rank
of the Lie algebra. The dimension of the Lie algebra (the space O without the unit
e) is r = dim (O0 ⊕O1) . Hence, dim (O1) = r − l.

The proofs of theorems in Cartan’s structure theory rely on the eigenvalues and
eigenvectors of the adjoint operators ĥi = hiα associated to the elements hi ∈ O0.
Clearly, for all i, j,

hiαhj = 0. (10)

The eigenvectors play an essential role due to the following theorem:

Theorem 3 All elements of a Cartan subalgebra O0 share the same eigenrays.

Proof. Let ρeρ be an eigenray of some arbitrary element h ∈ O0 (ρ being the
eigenvalue and eρ the eigenvector),

hαeρ = ρ eρ .

With another arbitrary element, h′ ∈ O0, apply the operator h′α to both sides of
this relation and use relation (10) to interchange h and h′,

h′α (hαeρ) = hα (h′αeρ) = ρ h′αeρ

which proves that ρh′αeρ is also an eigenray of h. 2

Once a Cartan subalgebra O0 has been selected, a linear basis of eigenvectors is
uniquely defined in its (r − l)-dimensional complementary subspace O1. This basis
decomposes the space O1 into a direct sum of invariant rays. The notation used for
the eigenvectors is eα, where Greek indices runs over a set of r − l values.

Let {h1, h2, ..., hl} denote some linear basis in the Cartan subalgebra O0. To
every eigenvector eβ is then associated an ordered set of eigenvalues, referred to as
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a root vector, or, simply, a root:

β
def= {β1, β2, · · · , βl} ,

whose components are defined by the l characteristic equations

hjαeβ = βjeβ . (11)

Clearly, there are r − l root vectors.

Theorem 4 There are no degenerate root vectors, i.e., eα /= eβ implies α /= β, mean-
ing that the sets of root vector components {α1, α2, · · · , αl, } , {β1, β2, · · · , βl} , differ
in at least one component.

Hence, the Greek indices which label the eigenvectors, e.g., α in eα, represent
root vectors.

Definition 3 The root space, V l, is the l-dimensional linear space spanned by all
root vectors.

The root space inherits the Cartan metric,

(α, β) def= (eα, eβ) , (12)

which, by Cartan’s theorem 1, is non-singular. In the basis {h1, h2, · · · , hl} , the
corresponding metric tensor is

gij = Cl
ikCk

jl. (13)

Theorem 5 There are no isotropic root vectors.

This means that for every root vector α ∈ V l, (α, α) = 0 implies α = 0, i.e.,
αi = 0 for all i = 1 · · · l.

To classify the structure constants Ca
bc, Cartan’s approach eliminates the arbi-

trariness they inherit from the arbitrariness of the coordinate system by working in
a basis of eigenvectors, the latter being uniquely defined by the Cartan subalgebra
O0.

Theorem 6 The eigenvectors are paired by a duality relation — dual pairs having
root vectors whose sum vanishes.

This theorem implies r − l = even, i.e., the space O1 is even-dimensional. The
notation used for the pairs of dual eigenvectors is {eα, e−α} .
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The Lie products we shall need are

hiα eα = αieα, (14)

hiα e−α = −αie−α, (15)

hα
def= eαα e−α = αkhk. (16)

As the products eαα eβ for α+β /=0 will not be needed to complete the classification
of quantal algebras, we do not review their properties.

We see from relations (14), (15) and (16), that the root vectors play the role
of structure constants. We also note that for every root α the triplet {hα, eα, e−α}
is a simple Lie algebra, i.e., that it has no invariant subalgebra. This can be seen
from the multiplication table

α hρ eρ e−ρ

hρ 0
(
ρkρk

)
eρ − (

ρkρk

)
e−ρ

eρ − (
ρkρk

)
eρ 0 ρkhk.

e−ρ

(
ρkρk

)
e−ρ −ρkhk 0

The final concept required to complete the classification is that of a string of
roots:

Definition 4 If α, β ∈ V l are any two root vectors, the set of root vectors of the
form β + kα ∈ V l, where k is an integer, is called an α-string containing β.

If the dimension r of the Lie algebra is finite, any string of roots is obviously
finite, but what is remarkable — and essential to Cartan’s procedure — is that the
maximal string length is fixed, in other words, it does not depend on the dimension
of the Lie algebra. Specifically,

Theorem 7 A string of root vectors can have at most four elements, and they are
all adjacent.

Cartan’s classification of solutions stems from the conditions this limitation
imposes on the geometric relationships among root vectors.

3. Classification of Quantal Algebras

While the classification of semi-simple Lie algebras stems from the Jacobi iden-
tity alone, quantal algebras are also constrained by the Leibnitz and association
identities. These additional conditions are satisfied by only some of the Cartan
classes of Lie algebras. We identify them in the present section by strengthening
Theorem 7.
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All proofs follow essentially the same pattern. We start with triplets of eigen-
vectors assumed to satisfy the conditions (10) and (14) to (16) — which conditions
already account for the Jacobi identity (1). We then introduce the commutative
product σ and impose the Leibnitz identity (2) and the association identity (3).
Expansion of both sides of each new relation using the appropriate characteristic
equations leads to additional relations among the root vectors. Only those semi-
simple Lie algebras which satisfy these relations are candidate semi-simple quantal
algebras. That they actually are quantal algebras can be verified in two ways. One
approach (rather laborious) would consist in completing Cartan’s structure theory
in the general formalism of the classification by verifying the Leibnitz and associ-
ation identities not only for the products (14) to (16), but also for the products
eααeβ when α + β /= 0. A much simpler approach, taken in Part III of the present
work, consists in verifying the relevant identities in a formalism best adapted to
the relevant realizations.

The association identity, (3), contains the composition class parameter a, which,
in principle, may be ± 1 or 0. We shall consider all three possibilities.

Proceeding by cases, we classify all relevant triplets into two types: those from
the Cartan subalgebra O0, i.e. {hi, hj , hk} , and those that also include elements
from the space O1, but not to the point of maximal generality, {eα, eβ , eγ} , which
happens to be unnecessary for our purposes.

Triplets in the Cartan subalgebra
Taking the Cartan algebra triplet {hi, hj , hk} , we expand the corresponding

Leibnitz and association identities. The Leibnitz identity

hiα (hjσhk) = (hiαhj) σhk + hiσ (hjαhk)

implies hiα (hjσhk) = 0, since each of the two summands on the right hand side
vanishes. Hence, hjσhk is a constant or belongs to O0. In general, hjσhk ∈ eR ⊕O0,
so that there exist two sets of real invariant coefficients, Aij , Sk

ij , such that hiσhj =
Aije+ Sk

ijhk. Since the only invariant 2-component tensor is the Cartan metric
restricted to the subalgebra O0, we have Aij = Agij for some A ∈ R. Hence,

hiσhj = Agije + Sk
ijhk, (17)

where gij is defined by relation (13).
The coefficients Sk

ij are symmetric, Sk
ij = Sk

ji, due to the symmetry of the
product σ. We next derive the conditions which are to be satisfied by A and Sk

ij .

Substitution of the expression (17) for the products sigma in the association
identity

[hi, hj , hk] = (hiσhj) σhk − hiσ (hjσhk) = ahjα (hkαhi) = 0,

yields two relations.
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The first relation,
A (Sijk − Skij) = 0, (18)

implies either A = 0, or, together with the symmetry in the first two indices, the
complete symmetry of the tensor Sijk,

Sijk = Skij = Sjki = Sjik = Skji = Sikj . (19)

We first consider the general case, A /= 0, Sijk /= 0.

It will prove convenient to define the vector Si,

Si = Sk
ik, (20)

as the trace of the tensor Sk
ij .

The second relation, after taking the total symmetry (19) into account, reads

Sr
ijSkmr − Sr

kjSimr = A (gkjgim − gijgkm) . (21)

Simpler equations follow by taking traces (a reminder: gijgij = l , the dimension of
the Cartan subalgebra):

Smr
i Sjmr − Sr

ijSr = A (l − 1) gij , (22)

SijkSijk − (S, S) = Al (l − 1) . (23)

Equations (19) and (22) exhaust what can be learned from triplets in the Cartan
subalgebra.

Mixed triplets

The triplets T1
def= {hi, hj , eα} , T2

def= {hi, eα, e−α} and T3
def= {eα, eα, e−α} are

the only ones we need to consider, as they alone yield sufficiently strong necessary
conditions to classify the semi-simple quantal algebras. That these conditions are
also sufficient will be shown in Part III by direct construction.

The Leibnitz identity can be applied within the triplet T1 in two ways. The first
ordering yields

hiα (hjσeα) = hjσ (hiαeα) ,

which, with relation (14), leads to

hiα (hjσeα) = αi (hjσeα) .

Thus, hjσeα is an eigenvector of the operator hiα for arbitrary i, and the corre-
sponding eigenvalue is αi. By relation (14), this implies that hjσeα is proportional
to eα, i.e., there exists a vector α̃j ∈ V l such that

hjσeα = α̃jeα . (24)
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It follows that the eigenvectors of the l operators hiα are also the eigenvectors of
the operators hiσ, but with different eigenvalues, i.e., different “root vectors”. We
use the same notation for the new root vectors, but with a tilde. We refer to them
as the reciprocal root vectors. Relation (24) is the sigma counterpart of relation
(14).

By applying the association identity to the triplet T2, one obtains

(e−ασhj) σeα − e−ασ (hjσeα) = ahjα (e−ααeα) .

By relations (16) and (10), the right hand side vanishes. With relation (24), this
further implies

(hjσe−α) σeα = α̃je−ασeα.

Since, by relation (24),

hjσe−α = (−αj)
˜
e−α,

it follows that the reciprocal root vectors for the dual eigenvectors eα and e−α are
equal, i.e., (−αj)

˜ = α̃j . Hence, the relation corresponding to (15) is

hjσe−α = α̃je−α. (25)

Unlike the set of l operators hiα, which, by Theorem 4, has no degenerate eigenval-
ues (root vectors), the eigenvalues of the set of operators hjσ (the reciprocal root
vectors) are at least doubly degenerate, since the eigenvectors eα and e−α belong
to the same reciprocal root α̃j (we say “at least” for lack of proof so far that all
vectors α̃j are different — but we shall soon see that they are).

A relationship between the root vectors and the structure constants Sijk follows
from the Leibnitz identity applied within the triplet T1 in the second ordering of
variables,

eαα (hiσhj) = (eααhi) σhj + hiσ (eααhj) .

Substitution into this equation of relations (17) and (14) yields

eαα
(
Agije + Sk

ijhk

)
= (−αieα) σhj + hiσ (−αjeα) ,

which simplifies to
αkSijk = αiα̃j + α̃iαj . (26)

Contraction of both sides of relation (26) by αj yields

αjαkSijk = (α, α̃) αi + (α, α) α̃i, (27)

while the trace (i.e., contraction by the metric tensor gij) is

(α, S) = 2 (α, α̃) . (28)
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A relation analogous to (16) for the reciprocal vectors follows from the Leibnitz
identity applied to the triplet T2:

(hiσeα) αe−α = hiσ (eααe−α) + (hiαe−α) σeα,

α̃ieααe−α = hiσ
(
αjhj

)
+ (−αie−α) σeα,

α̃iα
khk = αj

(
Agije + Sk

ijhk

) − αi (e−ασeα) .

Contracting both sides of the last relation by αi, using relation (27), and dividing
by (α, α) (which is allowed by theorem 2), yields

eασe−α = α̃khk + Ae. (29)

This relation is analogous to (16), except that it has an additional constant term,
Ae.

We next apply the Leibnitz identity to the triplet T3,

eαα (eασe−α) = eασ (eααe−α) ,

which, with relations (29) and (16), yields

eαα
(
α̃khk

)
= eασ

(
αkhk

)
,

− (α̃, α) = (α̃, α) .

The last equation implies
(α̃, α) = 0. (30)

Hence, the Cartan root vectors and the reciprocal root vectors are mutually orthog-
onal. It then follows from relation (27) that the reciprocal root vectors are defined
by the Cartan root vectors and the tensor Sijk by the formula

α̃i =
1

(α, α)
αjαkSijk. (31)

From relation (28) follows (S, α) = 0. Since this equation holds for all root
vectors, and since these vectors span the space V l, the vector Si ∈ V l vanishes,

Si = 0. (32)

This result simplifies relations (22) and (23) to

Smr
i Sjmr = A (l − 1) gij , (33)

SijkSijk = Al (l − 1) . (34)
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Returning to the triplet T1, we now expand the associator [eα, hi, hj ]:

(eασhi) σhj − eασ (hiσhj) = ahiα (hjαeα) ,

which simplifies to
α̃iα̃j − Agij − α̃kSijk = aαiαj . (35)

Using relations (31) and (32), contraction of both sides by αiαj and by gij yields,
respectively

a (α, α) + (α̃, α̃) + A = 0, (36)

a (α, α) − (α̃, α̃) + Al = 0. (37)

These relations can be solved for (α, α) and (α̃, α̃):

a (α, α) = −1
2
A (l + 1) , (38)

(α̃, α̃) =
1
2
A (l − 1) . (39)

We see that there are three different equations for (α, α), depending on the value
of the composition class parameter a.

Since l > 0, relation (38) implies A = 0 if a = 0,which contradicts the assump-
tion that A /= 0. Hence, the associative case a = 0 does not lead to a semi-simple
quantal algebra. In the sequel we consider only the cases a = ± 1, so that relation
(38) may be more conveniently written as

(α, α) = −a

2
A (l + 1) . (40)

This completes the analysis of the general case A /= 0, Sijk /= 0. We still have to
consider the two special cases of vanishing coefficients.

If we take A = 0 in relation (17), all calculations remain valid except for the
conclusion that Sijk is completely symmetric, for relation (18) no longer implies
it. This does not affect the validity of relation (40), which then implies (α, α) = 0.
Hence, by Theorem 2, there is no non-trivial solution.

If we take Sijk = 0 in relation (17), the association identity yields

Agijhk = Agjkhi.

As an identity in the vectors hi, it implies A = 0, which reduces this case to the
previous one. Hence, we conclude that A /= 0 and Sijk /=0.

As a passing remark, we note that relations (17) and Sijk = 0 imply hiσhi =
Agije , which is characteristic of Clifford algebras. But since Sijk = 0 implies A = 0,
we conclude that no non-trivial Clifford algebra is a quantal algebra.
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We now have the necessary relations to prove the key classification theorem for
quantal algebras — the counterpart of Theorem 7 for Lie algebras:

Theorem 8 In a quantal algebra, no string of root vectors can have more than two
elements.

Proof. Let us assume that a string of three elements does exist. Then, there are
two root vectors, β and γ, such that, for ε ∈ {−1, 0, 1} , each of the three vectors
α = β + εγ is a root vector. Substitution of this expression into relation (40) yields

(β, β) + ε2 (γ, γ) + 2ε (β, γ) = −a
1
2
A (l + 1) .

Since

(β, β) = −a
1
2
A (l + 1)

also holds, the difference of these two relations reads

ε2 (γ, γ) + 2ε (β, γ) = 0.

Summing the two equations corresponding to the cases ε = ± 1 yields (γ, γ) = 0,
but, by theorem 2, there are no isotropic root vectors. It follows that ε cannot as-
sume three adjacent values, and, hence, no string can have more than two elements.
2

The solutions
According to Theorem 8, the only semi-simple Lie algebras which might support

a quantal structure are those with string length not exceeding two. These algebras
are the two Cartan families Al and Dl, and the single algebra B1. The algebras
Al generate the unitary groups SU (l) , i.e., the groups of standard Hilbert space
quantum mechanics. With this solution we thus retrieve the standard Hilbert space
quantum mechanics, as expected. The algebra B1 generates the rotation group
SO (3) , which is locally isomorphic to SU (2). Hence, it is not a strictly non-
unitary solution. The algebras Dl generate the orthogonal groups SO (p, q) , where
p + q = 2l. This is the only Cartan family of Lie algebras which may contain
non-unitary solutions. We investigate them in the next section.

4. Non-unitary Quantal Algebras

If non-unitary algebras exist, we know by Theorem 8 that they are based on Lie
algebras from the Dl family. We prove in this section two theorems which further
limit the possibilities. The first restricts the rank of the algebra to l = 3; the second
establishes a relationship between the value of the association parameter a and the
sign of the determinant of the metric tensor gij in the space of root vectors.
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Theorem 9 There are no quantal algebras based on the Lie algebras Dl if l /=3.

Proof. The proof consists in showing that the various relations obtained earlier
between the root vectors and the coefficients A and Sijk can be satisfied in Dl only
if l = 3.

To this end, we shall need the explicit expressions for the root vectors in Dl.
It is easy to compute from the metric in a 2l-dimensional space of signature (p, q),
where p + q = 2l, that they are of the form

αi = ± rea ± seb,

where r and s are either 1 or i, and where ea, eb, with a, b ∈ {1, · · · , l} is an
arbitrary pair of basis vectors in V l, i.e., e1 = {1, 0, · · · , 0} , e2 = {0, 1, · · · , 0} , etc.
The metric tensor gij in V l is diagonal, as it is the restriction of Cartan’s metric
to the subspace O0. Its covariant form may be written as

gij = 2giδij , (41)

where the system {g1, g2, ..., gl} of sign indicators, gi = ±1, represents the signature
of the metric in V l. The contravariant form is

gij =
1
2
giδ

ij . (42)

We note that while the metric tensor gij and the root vectors depend on the
signature (p, q), the Cartan classification itself does not, which is why the signature
is never explicitly considered in texts on classification. With the adjunction of the
second product, σ, however, the signature becomes relevant.

To write the general expressions for the root vectors we shall use the square
roots of the diagonal elements, which, for convenience, we denote by γi,

γi
def=

√
gi, (43)

so that
γ4

i = 1. (44)

The four root vectors defined by a pair a, b of labels are of the form

αi (a, b) = η (γaδai + εγbδbi) , (45)

where η = ± 1 and ε = ± 1. To avoid repetitions, we might take a < b, but this
is not essential. The labels, taken from the beginning of the alphabet, a, b, c, ...,
are to be thought of as fixed. The summation convention applies only to the free
indices, i, j, k, ... taken from mid-alphabet. Whenever a summation is required over
the labels a, b, it is explicitly indicated.
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From (42) and (45) we get the contravariant expressions for the root vectors,

αi (a, b) =
1
2
η

(
γ3

aδi
a + εγ3

b δi
b

)
. (46)

The norm,

(α, α) ≡ αiαi =
1
2

(δaa + δbb) = 1, (47)

is obviously the same for all root vectors. This is consistent with relation (40),
which then implies

A (l + 1) = −2a. (48)

We can now compute the reciprocal root vectors. From relations (31), (46) and
(47) follows

α̃k =
1
4

(
γ3

aδi
a + εγ3

b δi
b

) (
γ3

aδj
a + εγ3

b δj
b

)
Sijk

=
1
4
gaSaak +

1
4
gbSbbk +

1
2
εγ3

aγ3
b Sabk. (49)

The orthogonality conditions (30) i.e., αkα̃k = 0, imply

0 =
(
γ3

aδk
a + εγ3

b δk
b

) (
gaSaak + gbSbbk + 2εγ3

aγ3
b Sabk

)
=

(
γaSaaa + 3γ3

agbSabb

)
+ ε

(
γbSbbb + 3γ3

b gaSaab

)
.

This being valid for ε = ± 1, both terms in parentheses vanish, leading essentially
to the same equation, which, after multiplication by γa, simplifies to

gaSaaa + 3gbSabb = 0 (50)

for all a /= b. Thus, for a given label a, this relation represents a set of l−1 equations
for all labels b different from a. To eliminate this exception, thus allowing b to run
over the full index set {1, ..., l} , we adjoin the identity

−3gaSaaa + 3gaSaaa = 0 (51)

to the system of l − 1 equations (50). The sum of all l equations is then

(l − 4) gaSaaa + 3
l∑

b=1

gbSabb = 0. (52)

The summation can be performed using relation (42). It yields

l∑
b=1

gbSabb =
1
2

l∑
b=1

gbbSabb =
1
2
gijSaij =

1
2
Sa,

152 FIZIKA B 10 (2001) 3, 139–160



grgin: inherently relativistic quantum theory. part II . . .

which vanishes by relation (32). Hence, relation (52) simplifies to (l − 4)Saaa = 0,
implying l = 4, or Saaa = 0. We consider in turn the cases l = 2, l > 4, l = 4 and
l = 3.

Rank equal two or greater than four
If l /=4, then Saaa = 0, which with equation (50), implies

Saaa = Sabb = 0. (53)

Thus, all components of Sijk with repeated indices vanish.
Relation (53) simplifies the expression (49) for reciprocal vectors to

α̃k =
1
2
εγ3

aγ3
b Sabk (54)

with a, b, k all different. For l = 2, this is impossible, so that there is no solution
for α̃k. This eliminates rank 2. What follows refers to rank l > 4.

The contravariant form of the reciprocal vector is

α̃k = 2εγaγbS
abk. (55)

For its norm, we get

(α̃, α̃) = SabkSabk, (56)

with the reminder that there is a summation over the tensor index k, but not over
the labels a, b, so that this relation represents a system of l (l − 1) scalar equations
(all pairs a /= b). Since, by relation (39), all reciprocal root vectors are of the same
length, relation (56) implies that SabkSabk has the same value for all labels a, b.
Hence, summing this expression over pairs of different labels yields

∑
a /= b

SabkSabk = l (l − 1) SabkSabk = l (l − 1) (α̃, α̃) . (57)

On the other hand, by relation (34), the sum on the left hand side is l (l − 1) A.
Hence,

(α̃, α̃) = A, (58)

and, by relation (39),

l = 3, (59)

which contradicts the assumption l > 4. Thus, from within the infinite family
of semi-simple Lie algebras Dl, we have so far eliminated all but D3 and D4 as
candidates that might support a quantal structure. Next, we eliminate D4.
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Rank four
For l = 4, equations (48) and (39) yield, respectively,

A = −2
5
a, (60)

(α̃, α̃) = −3
5

. (61)

We next reduce the coefficients Sijk to two vectors, Za, Ua, defined as

Za
def= Saaa, (62)

Ua
def= Sbcd, (63)

where a, b, c, d are all different, i.e., they represent any permutation of 1, 2, 3, 4.
Then, by relation (50),

Sabb = −1
3
gagbZa. (64)

Computing (α̃, α̃) from the expression (49), we get

α̃kα̃k =
1
16

[
SaakSk

aa + SbbkSk
bb + 2gagbSaakSk

bb + 4gagbSabkSk
ab

]

+
ε

8
[
γaγ3

b SaakSk
ab + γ3

aγbSbbkSk
ab + γaγ3

b SabkSk
aa + γ3

aγbSabkSk
bb

]
.

As this represents two equation (for ε = ± 1 respectively), taking their difference
implies that the second term vanishes. Together with equation (61), the first term
then yields

SaakSk
aa + SbbkSk

bb + 2gagbSaakSk
bb + 4gagbSabkSk

ab = −48
5

. (65)

We now expand each term using relation (42). For example

SaakSk
aa =

1
2

∑
gkSaakSaak

=
1
2

[gaSaaaSaaa + gbSaabSaab + gcSaacSaac + gdSaadSaad] .

In the shorter notations defined by relations (62), (63), (64), equation (65) reads

1
9

[
2gaZ2

a + 2gbZ
2
b + gcZ

2
c + gdZ

2
d

]
+ g

[
gcU

2
c + gdU

2
d

]
+

24
5

= 0, (66)
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where
g

def= gagbgcgd = det (gij) .

Relation (66) represents a system of 4! equations (the permutations of 4 labels),
but due to the symmetry in the label pairs a, b and c, d, only 6 of the these equations
are independent. As there are 8 unknowns (Z1, U1 to Z4, U4) we need additional
equations to compute these unknowns.

We obtain another system of independent equations from relation (33), which,
for l = 4, reads

Srs
i Sjrs = −6

5
gij .

Taking i = j = a and expanding the sum as in the previous case, one obtains

0 =
1
9

[
6gaZ2

a + gbZ
2
b + gcZ

2
c + gdZ

2
d

]

+g
[
gbU

2
b + gcU

2
c + gdU

2
d

]
+

24
5

. (67)

This represents a system of 4 equations, which, with the system (66), yields 10
equations for 8 unknowns. In principle, this system is overdetermined. To verify
that it actually is, we take the difference of the relations (66) and (67):

4
9
gaZ2

a − 1
9
gbZ

2
b + ggbU

2
b = 0. (68)

Adding to this relation the relation

4
9
gbZ

2
b − 1

9
gaZ2

a + ggaU2
a = 0

obtained by interchanging a and b, one obtains
[
1
3
gaZ2

a + ggaU2
a

]
= −

[
1
3
gbZ

2
b + ggbU

2
b

]
.

For this to be valid for all six pairs of labels, both sides must vanish, implying

ggaU2
a = −1

3
gaZ2

a .

Substitution of this result into relation (68) yields gaZ2
a = gbZ

2
b . Hence, there exists

a constant K such that

ggaZ2
a = K,

ggaU2
a = −1

3
K,
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for a = 1, 2, 3 or 4. Substitution of these results into equation (67) leads to the
absurd conclusion 24

5 = 0. Hence, no non-unitary quantal algebra exists for l = 4.
This leaves l = 3 as the only possibility. 2

We next turn to the question of signature for the case l = 3.
Rank three
Having eliminated all dimensions other than l = 3, we still have no proof that

a quantal algebra based on D3 actually exists, but, if it does, its metric is subject
to the following theorem:

Theorem 10 If a quantal algebra based on D3 exists, the determinant of the metric
in V 3 is defined by the association parameter a:

det (gij) = −a. (69)

Proof. The algebra D3 has four signature variants with respect to the metric
in V 3, namely (−,−,−) , (−,−,+) , (−,+,+) , (+,+,+) . They are represented by
the sign indicators (g1, g2, g3) .

Let S denote the only non-vanishing component of the symmetric tensor Sijk,
i.e.,

S = S123. (70)

Its contravariant form is

S123 = S123g
11g22g33 =

1
8
Sg1g2g3 =

1
8
SD, (71)

where
D = det (gij) = g1g2g3. (72)

Hence,

SijkSijk =
∑
P

S123S
123 =

3!
8

S2D, (73)

where the summation is performed over all permutations of the set of indices 1, 2, 3.
For l = 3, relations (48) and (34) yield, respectively,

A = −a

2
, (74)

SijkSijk = −3a. (75)

Hence, from relation (73) follows S2D = −4a. Writing D = ∆2, where

∆ def= γ1γ2γ3, (76)
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and taking into account that D2 = 1, one obtains the following expression for S,

S = 2iΘ
√

a∆, (77)

where we have denoted by Θ the sign of the square root, i.e., Θ = ± 1. As it
characterizes the quantal algebra, we introduce a name for it:

Definition 5 The orientation of a quantal algebra is the sign Θ of the square
root of the associativity constant a.

The final expressions for the sigma products in the Cartan subalgebra O0 follow
from relations (17), (41), (42) and (74) as

hiσhi = −agie, (78)

hiσhj = iΘ
√

a∆gkhk (79)

where i, j, and k are all different. Since hiσhj is a real observable, the coefficient
iΘ

√
a∆gk must be real, i.e., i

√
a∆ must be real. There are two possibilities:

Case of a = 1 : In this case, ∆ = ± i, and, hence, D = −1. This corresponds to
the two signatures (−,−,−) and (−,+,+) .

Case of a = −1 : In this case, ∆ = ± 1, and, hence, D = 1. This corresponds
to the two signatures (+,+,+) and (−,−,+) .

These results can also be verified directly. To this effect, we observe that the
abstract subalgebra {O0 ⊕ eR, σ} is associative (by the association relation and the
fact that the alpha products on O0 vanish). Taking i

√
a∆ = 1, the multiplication

rules (78), (79) read

hiσhi = −agie, (80)

hiσhj = Θgkhk. (81)

Considering the coefficients gj to be unknown, but requiring associativity,

(hiσhi) σhj = hiσ (hiσhj) ,

one obtains −agihj = Θ2gjgkhj , which implies |gi| = 1 and D = g1g2g3 = −a. 2

This completes the proof that a concrete non-unitary quantal algebra exists. It
has four variants, distinguished by the four possible systems of sign indicators of
the metric in the space V 3 of root vectors. Two correspond to a = 1, and two to
a = −1.

We still have to derive the explicit multiplication tables for the products sigma
and alpha. This can be done in terms of root vectors and eigenvectors in the
mathematical style of the present paper, but the calculations are tedious, while the
results thus obtained are not in a form adapted to further work. By contrast, the
calculations are quite straightforward in the formalism of linear algebra (Part III)
— which formalism we shall also need as an intermediate step in the construction
of the quantionic algebra.
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5. Conclusion

Since Parts I and II of the present work make very little reference to physics,
their physical relevance might not yet be evident. Referring to the history of mathe-
matics, which in great measure influenced our approach to the study of foundations
in physics, the following discussion should help put the approach in question in per-
spective and justify it heuristically.

Mathematical thinking can be classified, introducing an ad hoc terminology, as
existential or technical. Examples of the former are Gauss’s fundamental theorem
of algebra, which guarantees the existence of a complex root for every polynomial
with complex coefficients (1799), and Galois’ proof of the non-existence (in the
general case) of algebraic expressions for the roots if the polynomial is of degree
greater than four (1832). By contrast, the algebraic computation of these roots —
the Babylonian solution for the quadratic equation (1500 BC), and Cardano’s solu-
tion for the cubic equation (1545) — are technical. As the dates suggest, technical
mathematical thinking, bucking logic, antedates concerns about existential ques-
tions. Making allowance for exceptions, like Euclid’s proof of the non-existence of
a rational expression for the square root of two, technical thinking has been dom-
inant in mathematics until relatively recently — with consequences most wasteful
of mental effort, as exemplified by two millennia of futile attempts at “squaring
the circle”, until Lindeman’s proof of the tanscendence of π (1882) established the
non-existence of a solution.

Similarly in physics, the application of symmetry arguments and related con-
servation laws eliminates in bulk infinite sets of candidate solutions to a problem
by proving their non-existence — leaving for analysis by technical computations a
much smaller set that escapes elimination. Advances in modern theoretical physics
stem from a systematic interplay of the two modalities of thinking.

The work completed so far in Parts I and II of the present paper is strictly of
existential type. If it “feels like mathematics”, not like physics, it is because the
problem we are considering is not within physical theories, but about them. We
shall briefly review our objective and approach by making three observations: (1)
The existence of a maximal velocity c is structurally accounted for by relativity. (2)
The existence of a minimal action, ~, is structurally accounted for by quantum me-
chanics. (3) The existence of both simultaneously is not yet structurally accounted
for by any theory. Our objective is to find out if such a theory is possible. To this
end, the existential vs. technical classification yields its first fruits by suggesting a
methodology. Let us consider both possibilities.

The technical approach: Attempting to construct a unifying theory from rel-
ativity and quantum mechanics entails modifying at least the latter by whatever
means come to mind. This has undoubtedly been attempted countless times during
the last seventy years. While some of these attempts have been publishable, none
has been successful — which strongly suggests that it cannot be done. As Steven
Weinberg points out, Hilbert space is “too rigid” to admit any modifications that
would not destroy what is essential in it for quantum mechanical interpretation (at
least for modifications within currently available mathematics).
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The existential approach: Surprisingly, this approach has apparently not yet
been systematically explored. Our methodology consists of two steps:

Step 1: Extract from quantum mechanics some very general features consid-
ered essential, and then work them into an abstract mathematical structure. This
ensures that they form a self-consistent mathematical object. This step has been
completed in Part I, the generated structure being quantal algebra. We note that
it involves no modifications of existing concepts. The thinking is not even goal-
oriented, as we are not trying to achieve anything in particular. We are only hand-
picking, on heuristic grounds, some concepts out of quantum mechanics and ensur-
ing their mutual consistency in an abstract setting, at which point the essential part
of the work is completed. The abstract structure in question, the quantal algebra,
happens to be so rigid that it “forces the non-existence” of almost all imaginable
realizations, allowing only a few exceptions.

Step 2: Find the exceptions, i.e., all realizations of the abstract quantal alge-
bra. The procedure, completed in the present part of the work, extends Cartan’s
classification of semi-simple Lie algebras, as illustrated in Figure 1.

-

-

-

-

¾

¾

¾

¾

JACOBI

LEIBNITZ
ASSOCIATION

so(p,q)

su(n)

sp(2n)

Classification
of semi-simple
Lie algebras

Classification
of semi-simple

quantal algebras

R (Reals)

C (Complexes)

Q (Quaternions)

O (Octonions)

NO if p+q /= 3
or if p+q /= 6

YES

NO

NO
5 sporadic Lie algebras

Fig. 1. Realizations of the Semi-simple Structures

The left side shows Cartan’s classification, which stems exclusively from the
structure of the Lie algebra — essentially the Jacobi identity. There are three in-
finite families of solutions (orthogonal, unitary and symplectic) and a set of five
sporadic solutions. They correspond respectively, to orthogonal groups in sesquilin-
ear real, complex, quaternionic and octonionic spaces. A quantal algebra being a
Lie algebra with an additional product and two additional identities (Leibnitz and
association), the number of possible realizations is smaller. The family of unitary
groups is preserved (expectably so, as it is the underlying structure of standard
quantum mechanics), but of the other Cartan solutions, only the rotations in real
spaces of 3 and 6 dimensions are not eliminated. The signatures are arbitrary.

We see that step (2) is also devoid of technical arguments. It is purely existen-
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tial. Thus, if a generalization of quantum mechanics exists (and it is needed for
unification with relativity), it is somehow based on one of the Lie algebras so(p, q),
where p+q = 3 or p+q = 6. These results were not constructed. They merely with-
stood all attempts at proving that they don’t exist. This concludes the essentially
existential mathematics of the present work. Parts III and IV will be technically
dedicated to the quantionic algebra — a relativistic number system based on the
quantal algebra over so (2, 4) .
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SUŠTINSKI RELATIVISTIČKA KVANTNA TEORIJA
Dio II. SVRSTAVANJE RJEŠENJA

Apstraktna kvantalna algebra razvijena u Dijelu I ovog rada opisuje zajedničku
strukturu dviju poznatih mehanika, klasične i kvantne. Sama ta algebra nije fizika.
Ona je matematički sustav, ili, kako bi neki mogli reći samo matematika, točan
prigovor ako bi kvantalna algebra bila sama sebi ciljem, jer fizika nije u apstrak-
tnim teorijama već u njihovim stvarnim realizacijama. Stoga se pitamo, postoji
li bar jedna stvarna realizacija kvantalne algebre, jer medu tima mogle bi se naći
generalizacije kvantne mehanike koje vrijede u fizici. Potraga za realizacijama ap-
straktne teorije je poznata pod nazivom strukturna teorija ili klasifikacijski problem.
To je obično vrlo težak zadatak, no u ovom je slučaju relativno lagan jer su osnove
već postavljene Cartanovom klasifikacijom polujednostavnih Lievih algebri. Budući
da kvantalna algebra sadrži jednu Lievu algebru, trebamo samo primijeniti stan-
dardne rezultate postavljanjem dodatnih uvjeta. Ishod je toga da polujednostavna
kvantalna algebra ima točno dvije realizacije. Izraženo preko teorije grupa, jedna je
beskonačna familija unitarnih grupa, SO (n) , (tj., standardna kvantna mehanika),
a druga je posebno rješenje, SO (2, 4). Klasična mehanika nije rješenje jer zahtjev
polujednostavnosti uklanja kanonsku grupu. Stoga, ako se kvantna mehanika može
generalizirati. ta je generalizacija na neki način u svezi s grupom SO (2, 4). Ta
grupa sadrži relativističku strukturu prostora–vremena, pa se čini da je moguća
suštinski kovarijantna generalizacija.
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