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Disentangling of composite spectra is a promissing technique for the analysis of
double-lined spectroscopic binary systems. The technique makes use of a separa-
tion routine to extract model-component spectra out of a time series of observed
composite spectra. Focusing on the differences between two possible approaches
in the implementation of the separation routine, we compare the resulting limita-
tions. We perform test runs on artificial data and conclude that separation in the
wavelength domain is more versatile in several aspects, while the computational
efficiency of separation in the Fourier domain allows working with larger data sets
which is beneficial in a fully-blown disentangling process.
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1. Introduction
Binary stars are the principal source of fundamental stellar quantities. In par-

ticular, stellar masses may be extracted only from observations of binary stars. To
compare empirical stellar data to the theoretical stellar evolutionary models, high
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accuracy is needed, with uncertainties of 1 – 2%. Moreover, the new generation of
models which incorporate the effects of rotation, mixing and/or diffusion in stellar
interiors, would require even more accurate data.

In practice, empirical data are coming from combined analysis of light and
radial-velocity curves. While conceptionally simple, radial velocity measurements
are in general hampered by a number of difficulties, e.g. line blending, large rota-
tion, component confusion, signal-to-noise ratio (S/N), etc. Big advance has been
achieved through the application of the cross-correlation technique (cf. Hill [1]).
However, the method still suffers from several drawbacks, the need for template
spectra being the most serious one. Confusion in the observed composite spectra
commonly limits its analysis and has motivated the development of the spectral
separation techniques. Simon and Sturm [2], and independently Hadrava [3], devel-
oped the spectral disentangling technique that self-consistently extracts component
spectra and radial velocities without the use of template spectra. Initial applications
have shown the power of the technique [4, 5]

Hensberge, Pavlovski and Verschueren [6] have made use of the disentangling
technique in an elaborate study of the young, massive binary system V578 Mon in
the Rosette Nebula cluster. Their study relies on high-quality observations secured
at the European Southern Observatory. Special attention has been given to the
homogenized and proper normalization of high-resolution echelle spectra since it
was discovered that the disentangling process is very sensitive to the placement
of the continuum. In a subsequent study, an error analysis of the disentangling
technique has been initiated (Ilijić, Hensberge and Pavlovski [7]). The present work
is a continuation of the effort focusing on the comparative study of the separation
routines used for spectral disentangling.

2. Separation techniques

2.1. Assumptions and goal

The separation of the components of a composite spectrum is presently formu-
lated in a mathematical context that implies simple physics. The observed spec-
trum is described as a sum of intrinsic spectra that do not vary with time except
for wavelength shifts due to the orbital motion of stars. However, the light ratio
between the components may vary with time. In practice, this allows to describe
wide binaries (strictly speaking when out of eclipse or in mid-eclipse) and systems
with weak tidal deformations. Applications to systems with spectrum variables or
close binaries would require to analyze the consequences of the assumptions in more
detail.

Writing Jj(λ) for the intensity of radiation of the stellar system as observed
at time labeled j and at wavelength λ, and Ik(λ) for the intensity of radiation of
component star labeled k (for a binary, k = 1, 2) as would be observed if it were
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ilijić et al.: separation techniques for disentangling of composite spectra

not eclipsed and performed no orbital motion, we have

Jj(λ) =
∑

k

εkj Ik((1 − βkj)λ) , (1)

where εkj is the eclipse factor to the component star k at time j (unity if not
eclipsed and less than that otherwise), and βkj the radial velocity (RV) due to
orbital motion of star k at time j (as a fraction of the speed of light)2. As observed
spectra are most often available in the rectified (continuum-normalized) form, we
write Jj(λ) = J∗

j (λ) yj(λ) for the composite spectra of the system and Ik(λ) =
I∗
k(λ) xk(λ) for the spectra of component stars, where J∗

j and I∗k are the continua
and yj and xk are the rectified spectra. Equation (1) is now expressed in terms of
rectified spectra

yj(λ) =
∑

k

`kj(λ) xk((1 − βkj)λ) , (2)

where

`kj(λ) = εkj
I∗k((1 − βkj)λ)

J∗
j (λ)

≈ εkj I∗k(λ)∑
q εqj I∗q (λ)

(3)

is the wavelength dependent light factor (LF) expressing the fractional contribution
of continuum of component k at time j to the composite continuum around wave-
length λ. The approximate equality in Eq. (3) comes from the assumption that the
continua do not change significantly on the wavelength scale of the Doppler shifts
due to orbital RVs.

Within this model, separation can be formulated as a linear least-squares prob-
lem where a time series of composite spectra (observed spectra), yj(λ), of an un-
resolved multiple stellar system together with βkj and `kj(λ) (RVs and LFs) of
component stars are used to extract their intrinsic spectra, xk(λ), (model spectra).

2.2. Separation in the wavelength domain

Supposing that the data set consists of a time series of rectified observed spectra
labeled j = 1, . . . , Nobs, possibly sampled on different grids of wavelength points
λji, i = 1, . . . , Nj , and denoting yji = yj(λji) and `kji = `kj(λji), Eq. (2) may be
written

yji =
∑

k

`kji x̄k((1 − βkj)λji, {xkα}) , (4)

where x̄k(λ, {xkα}) is the amplitude of the model spectrum to component k at
wavelength λ, estimated from the set of free parameters xkα, α=1, . . . ,Mk. Note
that the estimator must be able to provide the amplitude at all wavelengths and

2Note the astronomical convention where radial velocity (RV) of an object is the projection of
its velocity onto the line of sight; positive RV is assigned to a receding object.
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times (orbital phases) covered by the data, so due to orbital Doppler shifts it must
be defined on a somewhat wider wavelength range than that of the data. If the free
coefficients xkα are chosen to be amplitudes of the rectified model spectrum sampled
on a grid of wavelength points, then the estimator x̄k is linear in xkα and Eq. (4)
represents a system of

∑
j Nj coupled equations linear in

∑
k Mk unknowns. To be

useful in practice, the system must be over-determined and is solved by requiring
the least-squares solution with each equation weighted by σ−2

ji (the inverse square
of the standard deviation of the data point obtained through data reduction).

Bagnuolo and Gies sampled both the observed and the model spectra on the
same logarithmic grid of wavelength points3 and used the estimator that picks the
amplitude from the bin of the model spectrum closest to the required wavelength
[8]. The system (4) was solved iteratively through normal equations. The technique,
labeled tomographic separation by its authors, was successfully applied in the series
of works on hot binaries, the most recent of which is Ref. [9].

Simon and Sturm used logarithmic binning as well, but applied a more ad-
vanced estimator (linear interpolation of amplitudes in two data bins of the model
embracing the required wavelength, which is realistic for oversampled spectra) and
used different resolutions for observed and for model spectra [2]. Due to the rank
deficiency of the system of equations, they recommend the use of the singular value
decomposition (SVD) to reach the least-squares solution of the system of equations;
another reason to use SVD is the likely occurence of numerical instability due to
the size of the matrix when solved through normal equations [10]. The separation
technique of Simon and Sturm was the first to be used for self-consistent extraction
of model spectra and determination of RVs (disentangling, see Sect. 2.4) [2, 4, 5].

The formulation of the separation in the wavelength domain leaves space for
including weighting/masking at any wavelength in the minimization procedure, as
well as continuously variable LFs, but at present these possibilities are not yet
exploited in full generality.

2.3. Separation in the Fourier domain

Hadrava used the discrete Fourier transform (DFT) of spectra to uncouple the
large system of equations (4), simplifying the numerical solution [3]. This may
prove important when long stretches of observed spectra are considered. But the
method offers less flexibility with regard to observational complications. Especially,
when shorter pieces of spectrum are considered, it is not always possible to cut
the observed spectra in such a way that sufficient continuum is enclosed at the
edges and as a consequence end-of-range effects (ERE), well-known in many DFT
applications, enter. Also, weighting is limited to an observed spectrum as an entity,
so it is impossible to ‘mask off’ particular regions in the data.

From the viewpoint of Eq. (4), this approach requires all spectra (observed and
model) be sampled on the same logarithmic wavelength grid, Nj ,Mk → Nbin; stan-

3Use of binning equidistant in the logarithm of the wavelength is a common practice because
the Doppler shift can be expressed in number of data bins independently of wavelength.
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dard deviation of the amplitudes of observed spectra (in the wavelength domain)
must be equal within each observed spectrum, σji → σj ; model spectra are consid-
ered periodic in wavelength with the period being the used range in wavelength,
and LFs are not allowed to depend on wavelength, `kji → `kj . Taking the DFT of
both sides of Eq. (4), and using the uppercase symbols to denote the DFTs of the
spectra, one obtains

Yji =
∑

k

`kj Xki e i Ωi∆kj , (5)

where index i = 0, . . . , 1
2Nbin runs over the discrete set of frequencies Ωi = 2πi/Nbin

(in radians per data bin)4 RVs are specified through ∆kj = βkj/βgrid, where βgrid

is the RV corresponding to one-bin shift on the logarithmic wavelength grid (RV-
resolution of the grid). The estimator of the amplitude of the Doppler shifted model
spectrum obtained this simple form by taking the DFT of the estimator expressed
in wavelength domain as a convolution of the model spectrum with a shifted delta
function. Equation (5) represents 1

2Nbin+1 systems of Nobs coupled equations, linear
in as many unknowns as there are stars in the system. If there are more observed
spectra than components in the multiple system, the subsystems of equations are
over-determined and least-squares solutions are required for each subsystem. Each
equation is weighted according to the weight assigned to the respective observed
spectrum (with the possibility of distributing the weights among spectra differently
at different Fourier frequencies). We recommended to use SVD to solve the systems
of equations because the use of normal equations (as in Ref. [3]) may lead to singular
or nearly singular matrices (see Sect. 4).

While the advantages in simplicity of implementation and the CPU-time re-
quirements of (5) over (4) are obvious, the limitations of Fourier domain separation
have to be considered carefully with each application. The separation routine based
on (5) passed several tests on artificial data and behaved well in practice when used
as part of the disentangling algorithm (see Ref. [7] and references therein).

2.4. A note on disentangling

The separation technique, as defined in the preceding sections, determines the
model (component) spectra by minimizing the weighted sum of squares of resid-
uals of the observed spectra and the composite spectra resulting from the model.
Starting from Eq. (4), the minimized quantity is

s2 =
∑
ji

1
σ2

ji

∣∣∣∣∣ yji −
∑

k

`kji x̄k((1 − βkj)λji, {xkα})
∣∣∣∣∣
2

. (6)

Simon and Sturm assumed that s2 obtained during separation with the ‘true’ βkj is
smaller than it would be obtained with βkj deviating from the ‘true’ values. They

4It has been assumed that the sign of the exponent in the definition of DFT is positive and
that Nbin is even. Only the positive frequency half of the true DFT is treated because the input
data are real.
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introduced disentangling as a non-linear least-squares problem where both βkj and
xkα are free parameters [2] in order to determine RVs and component spectra self-
consistently. While the assumption has not yet been proved mathematically, both
practical experience (including the comparison with directly observed spectra taken
in full eclipse) and error analysis support that it is valid [11, 7].

3. Tests on artificial data
The properties of the separation techniques can be demonstrated through nu-

merical tests. We use artificial data and conduct Monte-Carlo simulations of re-
peated experiments. Rotationally broadened synthetic spectra of hot stars are
combined into artificial spectra of a double-lined binary system. For the primary
(brighter) star we take Teff = 30 000 K and v sin i = 120 km s−1, and for the sec-
ondary (fainter) Teff = 27 500 K and v sin i = 100 km s−1. The orbit is taken to be
circular with RV semi-amplitudes K1 = 185 km s−1 and K2 = 260 km s−1. Rec-
tified spectra are combined with wavelength independent LFs `1 = 3

5 and `2 = 2
5

and Doppler shifts corresponding to orbital RVs at phases 1
4 , 3

5 and 4
5 , and with

`1 = `2 = 1
2 at phase 0 (primary eclipse factor ε1 = 2

3 )5. Our numerical tests consist
of creating 400 data sets differing only in their random part (Gaussian noise) and
subjecting them to separation. We examine the average and the standard deviation
of the model spectra that we obtain focussing on the systematic error that may be
present. Tests were performed in different spectral regions, at different resolutions
and S/N ratios. Our implementations of the separation routines operating in the
wavelength-domain and the Fourier-domain were used. Here, we present two typical
situations.

In our first example, a case that obeys the assumptions made in the Fourier-
domain separation (ends of spectra in line-free regions with length of the order
of K1 and K2; no blemishes; data with homogeneous S/N), the Fourier-domain
separation and the wavelength-domain separation deliver almost identical results.
As shown in Fig. 1, the ±1σ regions obtained with Fourier-domain separation are
symmetrically distributed around the synthetic spectrum.

In the second example, we show that significant systematic errors may enter the
model if the Fourier-domain separation is applied on data that are not in accord
with its validity assumptions. As can be seen in Fig. 2, the red end of the wave-
length range was not placed in the continuum region and the model spectra obtained
through Fourier-domain separation are consequently biased at both ends. We also
use this example to show the effect that a blemish in the observed spectra may have
on the model; a static absorption feature was introduced at 4096 Å (409.6 nm), and
the model was evidently perturbed by that as well. In contrast to this, there was no
systematic error in the model spectra obtained from the same data set through the
wavelength-domain separation what is due to two reasons: (i) wavelength-domain

5The physical parameters of the binary are similar to those determined for V578 Mon [6], with
the exception that the rotational velocity adapted in our model is higher (what complicated the
disentangling process.
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Fig. 1. Fourier domain separation: Hγ and He I lines, βgrid = 25 km s−1, S/N =
40. Synthetic component spectra (heavy lines labeledP andS) are combined into
composite spectra (thin lines labeled with orbital phase). 400 artificial data sets
are created (one shown in heavy lines) and subjected to separation. The resulting
±1σ region is shown (thin lines). All spectra are plotted on the same scale; shifts
of 0.25 in relative intensity are applied to the spectra.
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Fig. 2. Wavelength domain vs. Fourier domain separation: Hδ line, βgrid =
15 km s−1, S/N = 50. The ±1σ regions obtained with wavelength do-
main separation (the two bottom spectra) and with Fourier domain separation
(the next two spectra) are shown (see also caption to Fig. 1).
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separation is not sensitive to a particular placement of ends of spectral range (it
extends the model spectra as far as necessary at both ends instead of limiting them
to the length of the data and treating them as periodic) and (ii) the region affected
by the static feature was ‘masked off’ during separation (zero-weight, σ−1

ji = 0, was
assigned to the region around 4096 Å (409.6 nm) which resulted in a somewhat
higher σ in the model, but no systematic error).

4. Some practical remarks
In practice, it is likely that all spectra of a double-lined binary system are

observed out of eclipse and that both time and wavelength independent LFs are used
for the separation; `1j(λ) → `1 and `2j(λ) → `2. In such a situation, irrespective of
the choice of the separation technique, model spectra can be determined only up to a
(coupled) constant. This is most clearly seen from Eq. (5) if we take the frequency-
zero (i = 0) subsystem of equations that determines X10 and X20 (the constant
terms in model spectra); through the least-squares solution of the subsystem, only
the weighted sum `1X10 + `2X20 can be determined (normal matrix is singular [3]).
Therefore, c/`1 may be added to x1(λ) if c/`2 is correspondingly subtracted from
x2(λ), where c is an arbitrary constant.

Interstellar absorption can easily be included into the model as a wavelength
dependent absorption factor in front of the sums in (1) or (2), and to the extent
this absorption factor is known, data can be corrected for it prior to separation.
However, as absorption enters the right hand sides of (1) and (2) in a multiplicative
way it is not possible to model it in terms of free coefficients together with the
spectra of model stars and still end up with a linear least-squares problem. Telluric
lines and other spectral features that do not belong to (move with) component
stars are even more difficult to deal with because their intensities change with
time, and thus from exposure to exposure. Separation in wavelength domain can
take advantage of the possibility of masking out telluric lines assigning relatively
higher standard deviation (lower weight) to affected spectral regions.

5. Conclusion
Disentangling techniques have lead to the most precise determination of mass,

radius and other fundamental stellar parameters in well-detached binaries. In addi-
tion, studies of the chemical composition of individual components in binaries have
been shown to be possible on disentangled spectra if the composite spectra were
carefully reduced in a differential way [12]. Indeed, systematic reduction errors are
to our present knowledge the main limiting factor for a successful disentangling.
While the different disentangling techniques have proven useful, and several tests
on artificial data have been made, a larger experience on a variety of cases is needed.
Claims that non-additive components as terrestrial atmospheric absorption lines or
interstellar diffuse or line absorptions can be disentangled can, in our opinion, only

364 FIZIKA B (Zagreb) 10 (2001) 4, 357–366
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be true approximatively. This claim is evidently important for projects planning to
apply the method on extragalactic data. A combination of DFTs while iterating to
the best solution and a final application in the log-wavelength space, exploiting its
flexibility to take into account observational blemishes, appears presently to us to
be the best choice.
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TEHNIKE RAZDVAJANJA ZA RASPETLJAVANJE SLOŽENIH SPEKTARA

Raspetljavanje složenih spektara je obećavajuća metoda za proučavanje dvojnih
zvjezdanih sustava. Ta metoda primjenjuje rutinu za razdvajanje kojom se izlučuje
spektre zvijezda komponenata modela iz vremenskog niza opaženih složenih spek-
tara. Usredotočujući se na razlike u pristupu pri izvedbi rutine za rastavljanje,
uspored–ujemo ograničenja koja iz njih proizlaze. Proveli smo ispitivanje s umjet-
nim podacima i zaključili da je rastavljanje u području valnih duljina svestranije u
vǐse pogleda, dok rastavljanje primjenom Fourierovog transformata dozvoljava rad
s većim skupovima podataka, što je povoljno u potpunom procesu raspetljavanja
složenih spektara.
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