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Exact cosmological solutions for spherically symmetric models, both in four and
higher dimensions are obtained within the framework of Lyra geometry. It is ob-
served that there is no singularity at finite past in our four-dimensional model. For
the five-dimensional model, the diminision of extra dimension with the evolution
of the Universe is exhibited. The physical behaviour of the models is examined in
vacuum (for the four-dimensional case) and in the presence of perfect fluids (for
both four- and five-dimensional models).
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1. Introduction

In the last few decades, there has been a considerable interest in alternative
theories of gravitation. The most important among them are the scalar-tensor
theories proposed by Lyra [1] and by Brans and Dicke [1].

Lyra proposed a modification of the Riemannian geometry by introducing a
gauge function into the structureless manifold that bears a close resemblance to
Weil’s geometry. In general relativity, Einstein succeded in geometrising gravitation
by identifying the metric tensor with the gravitational potentials. In the scalar-
tensor theory of Brans-Dicke, on the other hand, the scalar field remains alien
to the geometry. Lyra’s geometry is more in keeping with the spirit of Einstein’s
principle of geometrisation, since both the scalar and tensor fields have more or less
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intrinsic geometrical significance. In the subsequent investigations, Sen [2] and Sen
and Dunn [3] proposed a new scalar-tensor theory of gravitation and constructed
an analog of the Einstein’s field equation based on Lyra geometry, which in normal
gauge may be written as

Rik − 1
2
gikR +

3
2
φiφk − 3

4
φmφm = −8P Tik , (1)

where φi is the displacement vector and other symbols have their usual meaning as
in the Riemannian geometry. According to Halford [4], the present theory predicts
the same effects within observational limits, as far as the classical solar-system tests
are concerned, as well as tests based on the linearised form of field equations.

Subsequent investigations were done by several authors in scalar-tensor theory
and cosmology within the framework of Lyra geometry [5].

Soleng [6] has pointed out that the cosmologies based on Lyra’s manifold with
constant gauge vector φi will either include a creation field and be equal to Hoyle’s
creation field cosmology, or contain a special vacuum field which together with the
gauge vector term may be considered as a cosmological term.

In this work, we present cosmological models within the framework of Lyra
geometry.

In Sect. 2, we study the Friedmann-Robertson-Walker (FRW) models of the
Universe with curvature parameter K = 0.

The unification of gravitational forces with other forces in Nature is not possi-
ble in the usual 4-dimensional space-time. So, higher-dimensional theory may be
useful to meet this challenge in quantum-field theory [7]. This idea is particularly
important in the field of cosmology, since one knows that our Universe was much
smaller in its early stage than it is today, and the present 4-D stages could have
been preceded by a higher-dimensional one at early times [7].

It is argued that the extra dimensions are not observable at the present time,
owing to their size-bearing, assumed to be of the order of the Planck length, but
perhaps they may have been relevant for the very early Universe.

As higher-dimensional theory is important at the early Universe, so it is inter-
esting to study higher-dimensional cosmological model in Lyra geometry. In Sect. 3,
we consider the five-dimensional perfect-fluid cosmological model based on Lyra’s
geometry.

The article ends with a short discussion in Sect. 4.

2. Four-dimensional spherically-symmetric model

The metric ansatz for the model is

ds2 = dt2 − eλ(t)(dr2 + r2dθ2 + r2 sin2 θ dφ2) . (2)
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We take a perfect-fluid form for the energy-momentum tensor

Tik = (P + ρ)UiUk − Pgik , (3)

together with the comoving coordinates UiU
i = 1.

The equation of state for the fluid is taken as

P = mρ (0 ≤ m ≤ 1) . (4)

The time-like displacement vector is taken as

φi = (β(t), 0, 0, 0) . (5)

Now, the field equations can be set up and one obtains

3
4

λ̇2 − 3
4

β2 = χρ , (6)

λ̈ +
3
4

λ̇2 +
3
4

β2 = −χP . (7)

Case I: Empty Universe

In this case
P = ρ = 0 . (8)

Solving the above field equations, we get

eλ = A(t − t0)2/3 and β2 =
4
9

1
(t − t0)2

. (9)

where A and t0 are constants of integration. The scalar of expansion is

θ =
3
2

λ̇ =
1

(t − t0)
. (10)

Here the gauge function β was large in the beginning, but decreases with the
evolution of the model. We also see that at t → ∞, the expansion ceases.

Case II: Matter-filled Universe

In this case, we take that the displacement vector is constant, i.e.,

β = const .

From Eqs. (4), (6) and (7), we get

λ̈ + Bλ̇2 = D , (11)
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where B = 3
4 (m + 1) and D = 3

4 (m − 1)β2. Solving Eq. (11), we get

eλ =
[
cosh aB(t − t0)

]1/B
, (12)

where A2 = D
B , and t0 is the integration constant.

We also get the following expressions for ρ, σ2 (shear scalar), θ, H (the Hubble
parameter) and Q (the deceleration parameter)

ρ =
3
4
(a2 tanh2 aB(t − t0) − β2) , (13)

θ =
3
2

tanh aB(t − t0) , (14)

σ2 = 0 , (15)

H =
a

2
tanh aB(t − t0) , (16)

Q = 2B cosech2aB(t − t0) − 1 . (17)

3. Five-dimensional spherically symmetric model

The line element for the five-dimensional Kaluza-Klein model is

ds2 = dt2 − eλ(t)(dr2 + r2dθ2 + r2 sin2 θ dφ2) − eµ(t)dy2 . (18)

Here the displacement vector is taken as

φi = (β(t), 0, 0, 0, 0) . (19)

The field equations (1) for the metric in (18) reduce to

3
4

(λ̇2 + λ̇µ̇) − 3
4

β2 = χρ , (20)

λ̈ +
3
4

λ̇2 +
1
2

µ̈ +
1
4

µ̇2 +
1
2

λ̇ +
3
4

β2 = −χP , (21)

3
2

(λ̈ + λ̇2) +
3
4

β2 = −χP . (22)

Here we have three field equations and one equation of state connecting five un-
knowns, namely λ, µ, ρ, P and β2. So for the unique solutions, one must asume
one more relation connecting them. We take

µ = aλ , (23)
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where a is an arbitrary constant. We obtain the solutions

eλ = B(t − t0)1/A , (24)

eµ = Ba(t − t0)a/A , (25)

ρ =
a3 + 5a2 + 6a

χ(1 − m)(2a − 1)A2

1
(t − t0)2

, (26)

3
4

β2 =
E

(t − t0)2
, (27)

where

A =
a2 + 2a − 3
2(2a − 1)

, E =
1

A2

(
3
4
(a + 1) − D

1 − m

)
, D =

3
2

+
5
4
a+

1
4
a2−

(
1 +

1
2
a

)
A.

B and t0 are integration constants.
For this model, the physical parameters are

θ =
3 + a

2A

1
t − t0

, (28)

σ2 =
3(a − 1)2

32A2

1
(t − t0)2

. (29)

4. Discussion

In this article, we have obtained several sets of explicit solutions both in the
four-dimensional model and in the higher dimension, within the framework of the
Lyra geometry.

In the four-dimensional spherically-symmetric model, both empty Universe and
matter filled Universe are studied. For the empty Universe, we see that the Universe
starts at an initial epoch at t = t0, which is a point singularity. In this case, the
deceleration parameter is constant. For the matter-filled Universe, we find an exact
solution of the field equations and note that our space-time is singularity-free. This
is unlike the solution in the general-relativity scheme, because it is very well known
that the isotropic and homogeneous FRW models must have a universal big-bang
singularity if the energy conditions are satisfied [8].

For the five-dimensional model, we note that the Universe starts at an initial
epoch t = t0. From Eq. (26), one can see that ρ ≥ 0 would hold only for a > 1

2 . If
1
2 < a < 3, the initial epoch is a line singularity with the evolution of the Universe,
eλ increases while eµ decreases. Thus, the extra dimension becomes insignificant as
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the time proceeds after the creation, and we are left with the real four-dimensional
world. At the initial epoch, all physical parameters θ, σ2 and ρ diverge. As t
gradually increases, θ, σ2 and ρ decrease, and finally, when t → ∞, θ, σ2 and ρ
vanish.

The gauge function was large in the beginning, but decreases with the evolution
of the model, and gradually dies out as t → ∞. So, the concept of the Lyra geometry
will not linger for indefinite time.
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STUDIJ ČETIRI- I VIŠE-DIMENZIJSKIH KOZMOLOŠKIH MODELA U
LYROVOJ GEOMETRIJI

U okviru Lyrove geometrije izvodimo točna kozmološka rješenja za sferno-simetrične
modele u četiri i vǐse dimenzija. U našem 4-dimenzijskom modelu ne nalazi se sin-
gularnost u konačnoj prošlosti. U 5-dimenzijskom se modelu pokazuje nestanak
dodatne dimenzije razvojem Svemira. Fizička se svojstva modela ispituju u vaku-
umu (4-dimenzijski model) i u prisustvu perfektne tekućine (za 4- i 5-dimenzijske
modele).
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