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We develop the mode-matching regularization scheme particularly suitable for prob-
lems in a uniform magnetic field. We apply this regularization scheme to bare QED
vacuum in (2 + 1) dimensions. This regularization scheme gives the exact renor-
malization of the bare QED vacuum and establishes its diamagnetic nature.
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1. Introduction

In any field theory, because of its infinite number of degrees of freedom, the
zero-point energy diverges. In a conventional field theory, the infinite zero point en-
ergy is always discarded, since it can be reabsorbed in a suitable redefinition of the
zero-point energy. This is justified in the sense that the infinite zero-point energy
is unobservable. However, the change in zero-point energy caused by the external
constraints is finite and observable. So, according to Casimir’s idea [1], the physical
vacuum energy can be defined as the difference between the zero-point energy corre-
sponding to the vacuum configurations with constraints and the one corresponding
to the free vacuum configurations. This definition must be supplemented in general
with a regularization prescription in order to obtain a finite convergent expres-
sion. Various regularization schemes [2,3] have been developed in the field theory
literature to obtain a finite cut-off-independent result. Here, we apply a simple
yet interesting regularization scheme to bare QED case in two spatial dimensions.
This regularization scheme [4] was previously used in the case of a charged scalar
field in an external magnetic field in two spatial dimensions. The purpose of this
paper is twofold. One is to establish this mode-matching regularization scheme as
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one of the important schemes suitable for an external magnetic field, and secondly,
to establish the nature of the (2 + 1) bare QED vacuum in an external magnetic
field. In literature, the renormalization of QED vacuum in (2 + 1) dimensions has
been discussed in a background magnetic field in the effective action formalism [5].
This example apart from its simplicity illustrates an important fact that the naive
N -particle nature does not always translate to a corresponding field theory.

This paper is organised as follows. In the next section, we develop the mode-
matching regularization and apply it to the non-relativistic case. In Sect. 3, we
apply it to the relativistic case, i. e. the bare QED vacuum, and show that the
response of the vacuum is diamagnetic in nature. Finally, in Sect. 4, we give our
conclusions.

2. Regularization in non-relativistic case

The regularization scheme we want to develop basically conserves the number
of modes. Without the magnetic field, the phase-space coordinates of a particle are
(x, px, y, py). The spectrum is continuous. But in the presence of a magnetic field,
the phase space is governed by (x, y,Πx,Πy). The spectrum now becomes discrete
and all energy levels are highly degenerate. This degeneracy of the system is related
to the non-commutavity of Πx and Πy. Since the commutation relation between Πx

and Πy is gauge invariant, hence the mode matching is gauge invariant. Again, the
phase-space density is invariant in any Lorentz frame. Therefore, this procedure
can be justified on physical grounds.

Counting the modes up to the L-th Landau level, we find

eBA

hc

L∑
l=0

1 =
eBA

hc
(L + 1) . (1)

Here, A is the area of the system. Similarly, for the momentum cut-off up to Λ, we
get the modes without the magnetic field as

2πA

h2

Λ∫
0

pdp =
πAΛ2

h2
. (2)

According to this mode-matching principle, we get

Λ2 =
eBh

πc
(L + 1) . (3)

This relation may look unphysical in the sense that Λ is depending on the magnetic
field. Instead, one should consider the mode-matching relation to find out L. Given
a value of Λ, one can fix the L value on the magnetic field. In this way one can
compare the two free energies. For non-integer values of L, the Landau level sum
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is not defined. One can also consider this as an intermediate step rather than the
final one. Of course, the physical quantity is here the difference between the two
free energies (when the cutoff is taken to infinity), not the individual ones.

We have used a sharp cut-off to both the integral and the sum involved. Instead,
one can also use the regularising cut-off function [6] like

exp(−(p2 + m2)/(2Λ2))

with a large Λ. With this regularization function, we can keep the limits of inte-
gration unaltered. This cut-off function is a smooth function of p with different
weights to different momenta p. Contributions from the high values of the momen-
tum p are not significant. Again, using the mode-matching principle, we can get a
relation among L and Λ. Formally, one can use this scheme to extract the universal
component of the vacuum contribution; however, its nontrivial non-linear structure
makes the calculation a little bit difficult for an exact analysis.

The non-relativistic expression of energy in the presence of a uniform magnetic
field is given by

E(B) =
eBA

hc

∞∑
l=0

(
l +

1
2

)
h̄ωc , (4)

and the energy without the magnetic field is

E(0) =
A

h2

∞∫
−∞

dpx dpy
1

2m
(p2

x + p2
y) . (5)

It is quite obvious that these two energies are divergent, so we use now the mode-
matching regularization scheme to obtain a finite difference between them. Now,
the energy in the presence of a magnetic field up to the L-th Landau level is given
by

E(B,L) =
e2B2A

4πmc2
(L + 1)2 . (6)

The energy without the magnetic field with a momentum cutoff Λ is given by

E(0,Λ) =
πAΛ4

4mh2
. (7)

Now, due to the mode matching, we notice that

E(B,L) = E(0,Λ) . (8)

Equation (8) shows the exact cancellation of the two infinities in the case of the non-
relativistic limit. This also restores the property of a true vacuum which has zero
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energy. One can also use the same mode-matching relation to (3 + 1) dimensions
to obtain the zero vacuum energy.

Up till now, we have not taken into account the spin of the electron. In the
presence of the spin, the non-relativistic energy levels in a uniform magnetic field
are given by

El,σ =
(

l +
1
2
h̄ωc

)
− σh̄ωc , (9)

where σ is the spin index which can take the values ± 1
2 , and ωc = eB/(mc) is the

cyclotron frequency. Because of the degeneracy between the spin-up and spin-down
electrons, Eq. (3) becomes

Λ2 =
eBh̄

c
(2L + 1) . (10)

Now, the energy in presence of the magnetic field is given by

E0(B,L) =
eBA

hc

[
L∑

l=0

lh̄ωc +
L−1∑
l=0

(l + 1)h̄ωc

]
. (11)

After simplification, we obtain

E0(B,L) =
e2B2A

2πmc2

[
(L +

1
2
)2 − 1

4

]
. (12)

Similarly, the energy without the magnetic field in this case becomes

E0(0,Λ) =
πAΛ4

2mh2
. (13)

Substituting the value of Λ, we get

E0(0, L) =
e2B2A

2πmc2

(
L +

1
2

)2

. (14)

Now, comparing the two energies, it is evident that

E0(B,L) − E0(0, L) = −e2B2A

8πmc2
. (15)

The difference is seen to be finite and independent of the cutoff. Also, the difference
decreases with the magnetic field. This in turn suggests that the ground state of
electrons having spin 1/2 degrees of freedom is paramagnetic in nature.
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3. Regularization of QED vacuum

In this section, we follow the natural units h̄ = 1 and c = 1. In the case of the
bare QED vacuum in an external homogeneous magnetic field, the single-particle
energy levels for spin-up and spin down states are given by [7]

ωl,σ =
√

m2 + 2l eB, ωl,−σ =
√

m2 + (2l + 2) eB . (16)

The total energy of the system is given by

E0(B) = −eBA

2π

∞∑
l=0

(ωl,σ + ωl,−σ) . (17)

(As noted above, A is the area of the system.) Note that there is a difference in
sign relative to the vacuum energy in the spin-zero case. This negative sign occurs
because spin 1/2 particles satisfy the anticommutation relation rather than the
commutation one [8,6,9]. The energy of spin-1/2 particle without the magnetic
field is given by

E0(0) = −2 × A

2π

∞∫
0

pdp
√

p2 + m2 . (18)

The factor 2 comes from the spin degeneracy. Again, we note that the energy
diverges both in the presence of an external magnetic field and without it. Below
we show that their difference is finite and positive in the asymptotic limit. We
regularize the energy in the presence of the magnetic field with a finite Landau
level cut-off L, and the energy then becomes

E0(B,L) = −eB A

2π

[
L∑

l=0

ωl,σ +
L−1∑
l=0

ωl,−σ

]
. (19)

The energy without the magnetic field with a finite momentum cut-off Λ is given
by

E0(0,Λ) = − 2A

6π

[
(Λ2 + m2)

3
2 − m3

]
. (20)

However, to compare these two energies (19) and (20), we need another relation
among L and Λ. This is provided by the mode-matching regularization scheme.
The number of modes in the presence of an external homogeneous magnetic field
with a cut-off L is given by

eBA

2π

[
L∑

l=0

1 +
L−1∑
l=0

1

]
=

eBA

2π
(2L + 1) . (21)
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Similarly, the number of modes without the magnetic field with a finite momentum
cut-off Λ is given by

2A

2π

Λ∫
0

pdp =
AΛ2

2π
. (22)

Equating these, we get a relation between L and Λ as

Λ2 = (2L + 1)eB . (23)

Therefore, Eq. (20) becomes

E0(0,Λ) = −2A

6π

[
((2L + 1)eB + m2)3/2 − m3

]
. (24)

It can be easily shown by numerically plotting and comparing the two energies that

E0(B,L) ≥ E0(0, L) . (25)

Before we go on to prove the (cut-off independent) renormalization and positiveness
of the free-energy difference, we present a simple table obtained numerically which
illustrates effectively the renormalization. The parameters used in following table
are m = 0.1 and B = 2. Here, ∆E = (2π/A) [E0(B,L) − E0(0,Λ)].

TABLE 1. Free-energy difference, ∆E, for different values of cutoffs (L).

Different values of cutoffs (L) ∆E
L = 10 1.71448
L = 100 1.68021
L = 1000 1.68623
L = 9000 1.68895

The above table illustrates two points, first, the difference is positive and hence the
response is diamagnetic. And secondly, the difference is going to saturate with the
cut-off and becomes independent of the cut-off in the asymptotic limit. For the sake
of completeness, we provide an analytical proof below. It is easy to notice that the
difference between the two energies can be written as

∆E0(B,m) =

2eBA
∑∞

l=0

[
1∫
0

dα
√

m2 + 2(l + α)eB −√
m2 + 2leB − √

m2 + (2l + 2)eB
]

.

(26)
Now, introducing the dimensionless variable ρ = eB/m2, we can write the above
difference in the dimensionless form as

g(ρ) =
∆E0(B,m)

2
√

2ρ3/2m3A
=

∞∑
l=0

dl(B,m) , (27)
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where dl(B,m) is given by

dl(B,m) = 2

1∫
0

dα
√

zl + α − (
√

zl +
√

zl + 1) , (28)

where zl = (1 + 2lρ)/2ρ. Now, note that the function f(α) =
√

zl + α is convex
(see Fig. 1).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

α

α
F

un
ct

io
ns

 o
f 

Graphical Plots to Prove the Relevant Inequality

Fig. 1. The curve is drawn for the function f(α) = (0.1 + α)1/2. The dash-dot line
is the chord joining the two end points of the curve. The area under the curve is
more than that under the chord. Hence, the positivity of dl(B,m) is proved.

Hence, it follows that

1∫
0

dα
√

zl + α −
√

zl +
√

zl + 1
2

≥ 0 . (29)

The convergence of this function can be proved easily. We note that

1∫
0

dα f(α) ≤
[
f(1/2) − f(0) + f(1)

2

]
. (30)

Now, applying mean value theorem twice, it is easy to show that

1∫
0

dα f(α) ≤ 1
16(zl + α)

3/2 . (31)
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Notice that the difference between the free energies varies with the cutoff as 1/
√

L.
This shows that in the relativistic case, the response of QED vacuum is diamagnetic
in nature.

Instead of using the previous mode matching (23), one can use the energy of the
highest state to obtain relations like Λ2 = 2LeB or Λ2 = (2L + 2)eB. It turns out
that the energy difference becomes cut-off dependent. Therefore, this regularization
scheme based on the matching of energy can be discarded.

4. Conclusion and discussion

The diamagnetism of QED vacuum in (3+1) dimension have also been discussed
in Ref. [9]. Here, we also find the same response as QED in (2+1) dimension. How-
ever, the result obtained in Ref. [9] depends on the cutoff used in the theory. Our
result uses a proper regularization scheme to deduce the diamagnetic nature of
the renormalised vacuum. If one thinks in terms of virtual pairs of electrons and
positrons which have spin, then one would naively believe that the vacuum will
be paramagnetic in nature. However, it turns out that it is diamagnetic. This be-
haviour is well known in literature [9,10] and has been explained as a consequence of
the Pauli exclusion principle. The nature of the QED vacuum in an inhomogeneous
magnetic field as well as with a finite chemical potential and finite fermion density
has been discussed recently in the literature [11,12]. To summarize, we have shown
the renormalization of bare QED vacuum in two spatial dimensions in an external
homogeneous magnetic field and established that the energy in presence of an ex-
ternal magnetic field is higher than without the magnetic field. This inequality has
been proved exactly through a novel regularization scheme.
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NOVA REGULACIJSKA SHEMA

Razvili smo regulacijsku shemu s usklad–ivanjem modova koja je posebno pogodna
za probleme u jednolikom magnetskom polju. Primijenili smo je u prostoru s (2+1)
dimenzija i čistom QED vakuumu. Ova regulacijska shema daje egzaktnu renorma-
lizaciju čistog vakuuma i utvrd–uje njegovu dijamagnetsku narav.
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