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GLOBAL MONOPOLE IN EINSTEIN-CARTAN THEORY BASED ON LYRA
GEOMETRY
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We present an approximate solution of Einstein - Cartan equations for the metric
outside a monopole resulting from the breaking of a global O(3) symmetry based
on Lyra’s modified Riemannian geometry. It is interesting to note that unlike the
general relativity case, the global monopole in Einstein - Cartan theory based on
Lyra’s geometry can have attractive as well as repulsive gravitational effect.
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1. Introduction
It is argued that the early universe had undergone a number of phase transitions

as it cooled down from the hot initial phase. One of the immediate consequences of
these phase transitions is the formation of defects or mismatches in the orientation
of the Higgs field in causally disconnected regions [1]. The type of defects depends on
the topology of the vacuum manifold M. In particular, monopoles are formed when
M contains surfaces which cannot be shrunk to a point, i.e., when π2(M) /=I. These
monopoles have Goldstone fields with their energy density decreasing with distance
as r−2. The monopole exerts practically no gravitational force on relativistic matter,
but the space around it has a deficit angle. Much work on the issue of global
monopoles has been carried out since Barriola and Vilenkin [2] first suggested that
these objects were by-produces of a global O(3) spontaneous symmetry breaking
down to U(1) [3].

In last few decades, there has been a considerable interest in alternative theories
of gravitation because it seems that gravity is not given by the Einstein action. For
this reason, different attempts have been carried out to study the gravitational
theories other than the one of Einstein.
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Lyra [4] suggested a modification of Riemannian geometry which may also be
considered as a modification of Weyl’s geometry. In Lyra’s geometry, Weyl’s concept
of gauge, which is essentially a metrical concept, is modified by the introduction of a
gauge function into the structureless manifold. In consecutive investigations, Sen [5]
and Dunn [6] proposed a new scalar-tensor theory of gravitation and constructed an
analogue of the Einstein field equations based on Lyra’s geometry which in normal
gauge may be written as

Rab − 1
2
gabR +

3
2
φaφb − 3

4
gabφcφ

c = −8πTab , (1)

where φa is the displacement vector and other symbols have their usual meaning
as in Riemannian geometry.

In a recent work [7], Farook Rahaman has studied the global monopole based
on Lyra geometry.

The extension of the geometric principles of general relativity to the physics
at a microscopic level, where matter formation is done by elementary particles,
characterized by a spin angular momentum in addition to the mass, is achieved in
Einstein-Cartan theory [8]. Since spin is a very important property of a particle, it
is very relevant to consider its role in the study of the configurations of topological
defects.

In this work, we shall deal with monopole in Einstein-Cartan theory based on
Lyra’s geometry in normal gauge, i.e., displacement vector φa = (β, 0, 0, 0), where
β is a constant, and look forward whether the monopole shows any significant
properties in the above consideration.

2. Basic equations
Since the space-time of global monopole is static and spherically symmetric, the

metric is taken as
ds2 = eγdt2 − eµdr2 − r2dΩ2

2 , (2)

where µ and γ are functions of r only.
In the original work of Barriola and Vilenkin, the energy momentum tensor due

to the monopole field outside the core is [2]

T t
t = T r

r =
η2

r2
with T θ

θ = Tφ
φ = 0 , (3)

where η is the symmetry breaking scale of the theory.
Following Prasanna [9], the Einstein - Cartan equations can be written as

Rab − 1
2
Rδb

a = −8πGTab , (4)

Qa
bc − δa

b Ql
lc − δa

c Ql
bl = −8πGSa

bc . (5)
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We assume that the spins of the particles composing the monopoles are all aligned in
the r-direction. So, the only nonzero component of the spin tensor Sab is S23 = K.
Here Sa

bc is the spin density described through the relations

Sa
bc = UaSbc with U cSbc = 0 , (6)

where Ua is the four-velocity, Ua = δa
4 and Qa

bc is the torsion tensor given by Eq.
(5).

Therefore, from Eqs. (1), (3), (4) and (5), the field equations for the metric (2)
in Einstein-Cartan theory based on Lyra’s geometry are

e−µ

(
γ1

r
+

1
r2

)
− 1

r2
− 3

4
β2e−γ + 16π2G2K2 =

8πGη2

r2
, (7)

−e−µ

(
µ1

r
− 1

r2

)
− 1

r2
+

3
4
β2e−γ + 16π2G2K2 =

8πGη2

r2
, (8)

e−µ

(
γ11

2
+

γ12

4
− µ1γ1

4
+

γ1 − µ1

2r

)
− 3

4
β2e−γ + 16π2G2K2 = 0 . (9)

3. Solutions
Now, subtracting Eq. (7) from Eq. (9) and multiplying by 1/r, we get

e−µ

[(
γ11

r
− γ1

r2
− 2

r3

)
− µ1

(
γ1

r
+

1
r2

)
+ γ1 γ1 + µ1

2r

]
+

2
r3

= −16πGη2

r3
. (10)

Differentiating Eq. (7) with respect to r, we obtain

e−µ

[(
γ11

r
− γ1

r2
− 2

r3

)
− µ1

(
γ1

r
+

1
r2

)]
+

3
4
γ1β2e−γ +

2
r3

= −16πGη2

r3
. (11)

From Eqs. (10) and (11), it follows

γ1

[(
e−µ µ1 + γ1

2r

)
− 3

4
e−γβ2

]
= 0 . (12)

From Eqs. (7) and (8), we get

[(
e−µ µ1 + γ1

2r

)
− 3

4
e−γβ2

]
= 0 . (13)

This is leading to
γ1 /=0 . (14)
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This indicates the existence of the gravitational force. Also, as β /=0, we never get
Barriola-Vilenkin–like solutions.

At this stage, we shall solve the field equations (7) - (9) in the weak-field ap-
proximation.

So we take the metric coefficients of the form

eµ = 1 + f(r) eγ = 1 + g(r) . (15)

Here functions f and g should be computed to the first order of η2, β2 and K2.
With this approximation, Eqs. (7), (8) and (9) take the following forms

− f

r2
+

g1

r
− 3

4
β2 + 16π2G2K2 =

8πGη2

r2
, (16)

f1

r
+

f

r2
− 3

4
β2 − 16π2G2K2 = −8πGη2

r2
, (17)

1
2
g11 +

g1 − f1

2r
− 3

4
β2 + 16π2G2K2 = 0 . (18)

Solving these equations, we get

f =
1
4
β2r2 +

16
3

π2G2K2r2 − 8πGη2 , (19)

g =
1
2
β2r2 − 16

3
π2G2K2r2 . (20)

Thus, in the weak field approximation, the monopole metric in Einstein-Cartan
theory based on Lyra’s geometry takes the following form

ds2 =
[
1 +

1
2
β2r2 − 16

3
π2G2K2r2

]
dt2

−
[
1 +

1
4
β2r2 +

16
3

π2G2K2r2 − 8πGη2

]
dr2 − r2dΩ2

2 . (21)

4. Gravitational effects on test particles
Let us now consider a relativistic particle of mass m, moving in the gravitational

field of a monopole described by Eq. (21) and using the formalism of Hamilton and
Jacobi (H-J).

The H-J equation is given by [8]

1
B(r)

(
δS

δt

)2

− 1
A(r)

(
δS

δr

)2

− 1
r2

(
δS

δθ

)2

− 1
r2 sin2 θ

(
δS

δφ

)2

+ m2 = 0 , (22)
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where B(r) = 1 + 1
2β2r2 − 16

3 π2G2K2r2 and A(r) = 1 + 1
4β2r2 + 16

3 π2G2K2r2 −
8πGη2.

In order to solve the particle differential equation, let us use the separation of
variables for the H-J function S as follows [8]

S(t, r, θ, φ) = −Et + S1(r) + S2(θ) + Jφ . (23)

Here the constants E and J are identified as the energy and angular momentum of
the particle.

The radial velocity of the particle is (for detailed calculations, see Ref. [10])

dr

dt
=

B

E
√

A

(
E2

B
+ m2 − p2

r2

)1/2

, (24)

where p is the separation constant. The turning points of the trajectory are given
by dr/dt = 0, and as a consequence, the potential curves are

E

m
=

√
B

(
p2

m2r2
− 1

)1/2

, (25)

Thus,

E

m
=

[
1 +

1
2
β2r2 − 16

3
π2G2K2r2

]1/2 (
p2

m2r2
− 1

)1/2

. (26)

In this case, the extrema of the potential curve are the solutions of the equation[
1
2
β2 − 16

3
π2G2K2

]
m2r4 + p2 = 0 . (27)

This equation has a real solution if 1
2β2 < 16

3 π2G2K2. So, the orbit of a massive
particle can be trapped by the monopole. In other words, the global monopole
exerts attractive gravitational force on the surrounding matter.

If 1
2β2 > 16

3 π2G2K2, then the equation has no real solution. So, orbit of a
massive particle can not be trapped by the monopole, i.e., the global monopole
exerts repulsive gravitational force on the surrounding matter.

5. Concluding remarks
We see that in going from general relativity to Einstein-Cartan theory based

on Lyra’s geometry, both space-time curvature and topology are affected by the
presence of the spin tensor. By studying the motion of test particle, we have shown
that the global monopole can have an attractive as well as a repulsive gravitational
effect on the matter around it. This example is in striking contrast with the cor-
responding result in general relativity, as we know that the monopole exerts no
gravitational force [2]. From this we conclude that the spins of the particles take
an important role for monopole configuration. So, for future work, one can study
other topological defects in Einstein-Cartan theory based on Lyra’s geometry.
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GLOBALNI MONOPOLI U EINSTEIN-CARTANOVOJ TEORIJI
ZASNOVANOJ NA LYRINOJ GEOMETRIJI

Predstavljamo približno rješenje Einstein-Cartanovih jednadžbi za metriku izvan
monopola, koja slijedi iz lomljenja globalne O(3) simetrije, zasnovane na Lyrinoj
promjeni Riemannove geometrije. Zanimljivo je istaknuti da, za razliku od slučaja
opće teorije relativnosti, globalni monopol u Einstein-Cartanovoj teoriji zasnovanoj
na Lyrinoj geometriji može gravitacijski privlačiti kao i odbijati okolne mase.
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