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Assuming uniformly distributed nucleons in the configuration space at the time of
freeze-out, we propose a way for a unique determination of the cell-size in momen-
tum space. Then, using the nucleon occupation probability function in momentum
space, we discuss the possibility for the determination of generalized entropy in
heavy-ion reaction systems at freeze-out.
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1. Introduction

Nuclear matter at densities of a few times the ground-state density (ρ ≤ 3ρ0)
and at temperatures well below the so-called Hagedorn temperature [1] (TH ≈ 140
MeV, i.e. the pion mass) is a system of strongly interacting hadrons whose proper-
ties are still poorly understood. One of the goals of the relativistic nuclear physics
is to study the behaviour of hot and dense nuclear matter in terms of different
physical quantities related to the hadronic equation of state, such as density, tem-
perature, specific heat, compressibility, entropy and others. Indeed, investigations
of heavy-ion collisions offer an experimental method of probing nuclei far from the
low temperature and density state. The relativistic heavy-ion experiments study-
ing the break-up of nuclei have greatly contributed to the understanding of particle
production in heavy-ion collisions [2–5]. The conditions for particle production have
been examined theoretically in Refs. [6], [7] and [8].
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It is generally assumed that entropy is a quantity which remains almost un-
changed throughout the final decompression-expansion stages of the interaction [9].
Thus, a measurement of baryonic entropy in the final state yields information on
the state of hot and dense nuclear matter (a “memory effect”). The entropy in
central-collision reactions of heavy nuclei stems from several sources, but most of
the entropy is produced by shock waves. Additionally, entropy increases during
expansion. The entropy information on nuclear matter produced in heavy-ion col-
lisions is not easily accessible. In a number of experimental papers, the value of en-
tropy has been determined for various nuclear systems and projectile energies using
several (static) models for the formation of a hot nucleus and different global ob-
servables [10–12]. These observables have been compared with those obtained using
different models. Obviously, such a determination of entropy is model-dependent.

In this work, we propose to study the amount of entropy generated at the time
of freeze-out without recurring to simulation models. For this purpose, we use
a general approach for the determination of entropy in non-interacting fermionic
systems.

Section 2 introduces the idea for the determination of generalized entropy. The
estimation of entropy at freeze-out is discussed in Sect. 3 and the cell-size definition
for central events in Sect. 4. A summary is given in Sect. 5.

2. Generalized entropy

An approach to the determination of entropy in fermionic systems was intro-
duced by Boltzmann providing a statistical basis of thermodynamics. The entropy
in a microcanonical ensemble defined by Boltzmann is proportional just to the
logarithm of the number of possible microscopic states in phase space at a given
excitation energy,

S = k lnN(E) = −k lnP (E), (1)

where k is the Boltzmann constant and P (E) = N−1(E) is the probability assumed
to have the same value for each of the microstates in an equilibrated system.

For a non-equilibrated system of independent fermions, the time-dependent gen-
eralized entropy S(t) can be defined as

S(t) = −k
g

h3

∫ ∫

{f(t, r,p) ln f(t, r,p) + [1 − f(t, r,p)] ln[1 − f(t, r,p)]} dr dp,

(2)
where g is the spin-isospin degeneracy factor (g = 4 in our case), h is the Planck
constant and f(t, r,p) is the single-particle occupation probability in phase space.
The explicit dependence on time of the generalized entropy and of the distribution
function can be omitted since our study is restricted to the freeze-out conditions

S = −k
g

h3

∫ ∫

{f(r,p) ln f(r,p) + [1 − f(r,p)] ln[1 − f(r,p)]} dr dp. (3)
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This entropy definition leads to the usual thermodynamic entropy in the case
of global thermodynamic equilibrium.

It should be stressed that the generalized entropy is well defined only if the cell-
size determination is unique [13]. Thus, according to the Heisenberg uncertainty
principle, we divide a 6-dimensional single-particle phase space into a set of “small”
cubic cells of the size

∆Ω = (∆x)3(∆px)3 = h3. (4)

In this way, the generalized entropy at the time of freeze-out defined by (3) becomes
(k = 1)

S = −g
∑

r

∑

p

{f(r,p) ln f(r,p) + [1 − f(r,p)] ln[1 − f(r,p)]} . (5)

The distribution function f(r,p) depends on six variables and it would not be
practical to make a brute-force division into cells in all six dimensions. Since exper-
imental data permit to deduce the occupation probability only in the momentum
space, we should reduce the distribution function dependence to a set of three mo-
mentum variables. To do this, we start from the spatial density of nucleons, which
is related to the occupation probability f(r,p) by

ρ =
g

h3

∫

f(r,p) dp. (6)

Assuming the momentum space divided into small cubic cells of the size (∆px)3,
we have for the spatial density

ρ =
(∆px)3

h3
g

∑

p

f(r,p). (7)

The sum of the occupation-probability function in (7) over the whole momentum
space times the spin-isospin factor g gives the total number of nucleons in the
colliding system

g
∑

p

f(r,p) = A, (8)

and, thus, for spatial density we obtain

ρ =
(∆px)3

h3
A. (9)

Using the above expression and the expression (4), we obtain the size of the cells
(∆x)3 in the configuration space

(∆x)3 = h3 1

(∆px)3
=

A

ρ
. (10)
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Obviously, the size of the cells in the configuration space is equal to the total volume
of the colliding system

(∆x)3 = V. (11)

3. Time of freeze-out

It is very important to gain a rough qualitative picture of the phase-space distri-
bution of particles. At the beginning of the reaction, the distributions in momentum
and configuration spaces are uncorrelated. After the violent initial phase of the col-
lision with a rapid increase of the entropy, density and local excitation energy, the
system begins to expand and cool. Freeze-out characterizes the situation where the
particles are far enough from each other, so that they are not colliding any longer.
If this happens in all space during a narrow time interval, it is possible to define a
freeze-out time.

Depending on the speed of the expansion, freeze-out will “freeze” the velocities
of nucleons and clusters in different conditions on the way towards the equilibrium.
Thus, we can suppose that nucleons are uniformly distributed in the configuration
space at the time of freeze-out and, thus, the occupation probability function de-
pends only on the momentum coordinates. Hence, the entropy may be expressed
by

S = −g
∑

r

∑

p

{f(p) ln f(p) + [1 − f(p)] ln[1 − f(p)]} . (12)

From the expression (11), we see that there is only one cell in configuration space.
Thus, the generalized entropy can be expressed as a sum over momentum space
only,

S = −g
∑

p

{f(p) ln f(p) + [1 − f(p)] ln[1 − f(p)]} . (13)

From Eq. (9), it is easy to calculate the size of cubic cells in momentum space
as a function of the freeze-out density ρ,

(∆px)3 = h3 ρ

A
. (14)

For example, for the Au + Au reaction system (A = 394) at the assumed freeze-out
density ρ = 0.3ρ0, one obtains an approximative value ∆px ≈ 60 MeV/c for the
size of cells in momentum space.

4. Topology of central events

The generalized entropy in Eq. (13) is expressed by the three-dimensional sum
in momentum space. Since central events of reaction systems have two-dimensional
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dželalija et al.: determination of generalized entropy in heavy-ion . . .

topology, the generalized entropy of these events can be expressed by the two-
dimensional sum in momentum space (transversal and longitudinal). For central
events, we can assume cylindrical symmetry and, thus, the occupation probability
function f(p⊥, p‖) is a function of transverse and longitudinal components of the
momentum. Hence, the generalized entropy is given by

S = −g
∑

p⊥

∑

p‖

{

f(p⊥, p‖) ln f(p⊥, p‖) + [1 − f(p⊥, p‖)] ln[1 − f(p⊥, p‖)]
}

. (15)

In the above sum, the size of the transversal (∆p⊥)(i) = (∆P⊥)(i) − (∆P⊥)(i−1)

and longitudinal (∆p‖)(i) components of the ith cell (see Fig. 4) can be expressed
by the following relation

π(∆P⊥)2(i)(∆p‖)(i) = i(∆px)3. (16)

Fig. 1. Topology of a central event with the sizes of the transversal (∆p⊥)(i) and

longitudinal (∆p‖)(i) components of the cell.

The size of the transversal and longitudinal components of the cell are related to
each other by the asymmetry parameter Y , which is defined as a ratio of average
transversal and longitudinal components of momentum distributions

Y =
< p2

⊥ >

< p2
‖ >

. (17)

Using the asymmetry parameter Y , which can also be written as

Y =
(∆P⊥)2(i)

(∆p‖)
2
(i)

, (18)

the longitudinal component of the ith cell can be obtained from the expression (16)

π[Y (∆p‖)
2
(i)](∆p‖)(i) = i(∆px)3,

πY (∆p‖)
3
(i) = i(∆px)3. (19)
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Inserting (∆px)3 from (14) into the above expression, we obtain for the longitudinal
(∆p‖)(i) component of the ith cell

πY (∆p‖)
3
(i) = h3 ρ

A
i,

(∆p‖)(i) = h 3

√

ρ

πY A
i. (20)

The size of the transverzal component, (∆p⊥)(i) = (∆P⊥)(i) − (∆P⊥)(i−1), of the
ith cell can be obtained by combining expressions (18) and (20) as follows

(∆p⊥)(i) = (∆P⊥)(i) − (∆P⊥)(i−1)

=
√

Y [(∆p‖)(i) − (∆p‖)(i−1)]

=
√

Y h 3

√

ρ

πY A
(

3
√

i − 3
√

i − 1)

= h
3

√

ρ
√

Y

πA
(

3
√

i − 3
√

i − 1). (21)

Finally, the values of (∆p‖)(i) and (∆p⊥)(i) are the following

(∆p‖)(i) = h 3

√

ρ

πY A
i,

(∆p⊥)(i) = h
3

√

ρ
√

Y

πA
(

3
√

i − 3
√

i − 1), i = 1, 2, 3, . . . . (22)

The occupation probability function f(p⊥, p‖) and the asymmetry parameter Y
can be obtained from experimental data, and from these quantities the value of the
generalized entropy at the assumed freeze-out can be derived.

5. Summary

The understanding of the origin of the entropy content of reaction systems is one
of the problems in nuclear physics which is still open. Entropy production requires
deviations from thermodynamic equilibrium, which are assumed to be realized at
very high temperatures.

We have proposed a generalized approach to the determination of single-particle
entropy in central nucleus-nucleus collisions. The approach is based on a unique
determination of the cell size in momentum space for a chosen freeze-out den-
sity. Assuming a cylindrical topology of central collisions at freeze-out, it is possi-
ble to determine the entropy from experimental heavy-ion data. The present ap-
proach, however, has inherent uncertainties. The principal uncertainty stems from
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the freeze-out density assumption, and we have not taken into account that the par-
ticle freeze-out is a continuous rather than a sudden process. Also, this approach
gives the single-particle entropy, while, in general, one should consider the N -body
entropy, for which the distribution in the full 2N -dimensional phase space should
be involved.
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ODRED– IVANJE POOPĆENE ENTROPIJE U SUDARIMA TEŠKIH IONA

Pretpostavljajući jednoliku raspodjelu nukleona u konfiguracijskom prostoru u
trenutku zamrznuća, predlažemo pristup jedinstvenog odred–ivanja veličine ćelija
u impulsnom prostoru. Nadalje, primjenom funkcije vjerojatnosti zaposjednuća
u impulsnom prostoru, razmatramo mogućnost odred–ivanja poopćene entropije u
teškoionskim reakcijskim sustavima u trenutku zamrznuća.
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