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Massive, chirally right-handed solutions of an antilinearly modified Dirac equation
are calculated. This is a continuation of a previous paper, where the equation was
first introduced and found to separate into states of definite (and opposite) chiral-
ities, each state being either massive or massless.
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1. Introduction

In previous papers, the Dirac equation with two mass parameters and related
topics were discussed (see Refs. [1] through [6]). The approach was used to derive
standard equations for massive, massless and tachyonic fermions. In particular, a
massless equation was obtained, which differs from the usual one and does not pro-
duce a superfluous conserved current. In Ref. [7], the aforementioned results were
reformulated and justified on the grounds of desirable features relating to the active
symmetry operations (time reversal, spatial parity, etc.). Possible applications and
a flavored neutrino model were examined in Refs. [1], [3], [7] and [8].

In Ref. [9], an antilinear modification was introduced, which generates a for-
malism of two chiral eigenstates, each being either massive or massless. This de-
scription is quite different from that of the other references, but, again, could be
useful for neutrino physics, as pointed out in the Conclusions of Ref. [9]. For related
approaches, see Refs. [10] through [13].

In this paper, massive right-handed solutions of the “chiral Dirac equation” of
Ref. [9] are calculated. The elementary solutions are not energy eigenstates, but
consist of linear combinations of positive and negative energy states; more gen-
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eral solutions are obtained by superposition. The treatment is done before second
quantization, but issues of second quantization are discussed in Sects. 2, 4 and 5.

Notation is rather conventional: specifically, and unless otherwise noted, Greek
(Latin) indices run through the values 0, 1, 2, 3 (1, 2, 3) and the summation conven-
tion is applied to repeated up and down labels. Units are such that h̄ = c = 1. An
attempt is made at distinguishing powers from superscripts: for instance, ( /P)2 and
|a |2 are powers, while γ2 indicates a specific object with superscript 2. The curly
bracket is used for ordered sets: e.g., {xω} denotes four objects in the order 0 − 3.

2. Review

In a frame of reference X of real spacetime coordinates x = {xω} and pseudoeu-
clidean metric gµν = diag{+1,−1,−1,−1}, the chiral Dirac equation introduced
in Ref. [9] may be written as follows

/PΨ(x) = M(a, b) [Ψ(x)] C, (1)

with

/P = iγα∂α (2)

and

M(a, b) = aM(−) + bM(+) , (3)

where a and b are complex constants, Ψ(x) is a complex four-spinor, and M(∓)

indicate the chiral projectors:

M(∓) =
1

2
(I ∓ εγ5) . (4)

The Dirac matrices γω (in a fixed chosen representation) obey the usual rules

γµγν + γνγµ = 2gµνI , (γµ)† = γ0γµγ0 , (5)

with I being the 4×4 identity matrix. The matrix γ5 = iγ0γ1γ2γ3 is hermitian and
unitary, and anticommutes with all γω. For general reference on the Dirac equation
and related topics, see, for instance Refs. [14] through [24]. The value of the sign
ε = (−1)T+S depends on the frame of reference [1, 25]. Namely, the time-index T
and the space-index S of X are so defined: T = 0 if t = x0 runs forward (T = 1
otherwise) and S = 0 if s = {xℓ} is a right-handed triplet (S = 1 otherwise). It is
also reminded that

(γµ)∗ = B†γµB , (γ5)∗ = −B†γ5B , (6)
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where B is the (fixed chosen) unitary matrix [2] associated with charge conjugation,
and the asterisk denotes complex conjugation. The symbol C in Eq. (1) indicates
the antilinear operation of charge conjugation, defined as [7]

[Υ(x)] C = γ5BΥ∗(x) (7)

on a generic four-spinor Υ(x); the notation ΥC(x) will also be used.

Equation (1) is manifestly covariant under changes of coordinates of the
Poincaré group, provided a and b are treated as scalars, and the usual (passive)
spinor transformations [20] are adopted with an appropriate phase convention (see
Eq. (37) of Ref. [2]). For the active operations [2] of charge conjugation, spatial
parity (P), time reversal (T), PC and TPC

ΥP(x) = iγ0 Υ(t,−s) , ΥT(x) = γ0BΥ∗(−t, s) , (8)

ΥPC(x) = iγ0γ5BΥ∗(t,−s) , ΥTPC(x) = −iγ5 Υ(−x) , (9)

one obtains that: (i) TPC invariance is valid for all possible choices of a and b; (ii)
invariance under C applies if b = a∗; (iii) invariance under P is valid if a = b; (iv)
invariance under T applies if a, b ∈ ℜ; (v) invariance under PC is valid if a, b ∈ ℜ.
For example, the equations for ΨC(x) and ΨT(x) are as follows

/PΨC(x) = M(b∗, a∗) [ΨC(x)] C, (10)

/PΨT(x) = M(a∗, b∗) [ΨT(x)] C. (11)

It is noted that Eq. (1) leads to the generalized (linear) Klein-Gordon equation

2Ψ(x) = N(a, b)Ψ(x) , (12)

with

N(a, b) = |b |2 M(−) + |a |2 M(+) = M
(

|b |2, |a |2
)

, (13)

and

2 = − ∂αgαβ∂β = ( /P)2. (14)

Furthermore, it is observed that Eq. (1) is nearly linear, but not exactly linear;
specifically, if Ψ1(x) and Ψ2(x) are solutions of (1), their linear combination may
not be a solution of (1) unless the coefficients of the combination are real. For lack
of a better term, this property will be called “ℜ-linearity”.

Using definitions

Λ(x) = M(−) Ψ(x) , Φ(x) = M(+) Ψ(x) , (15)

FIZIKA B 12 (2003) 3, 219–226 221



raspini: solutions of the chiral dirac equation

Eqs. (1) and (12) split into left-handed (LH) and right-handed (RH) equations:

/PΛ(x) = b [Λ(x)] C , 2Λ(x) = |b |2 Λ(x) , (16)

/PΦ(x) = a [Φ(x)] C , 2Φ(x) = |a |2 Φ(x) , (17)

with separately conserved real currents

jµ(x) = Λ(x)γµΛ(x) , (18)

kµ(x) = Φ(x)γµΦ(x) , (19)

where

Υ(x) = Υ†(x)γ0 . (20)

Each current is appropriate for the usual probability interpretation in terms of a
single particle theory [7, 20]. Thus, Eq. (1) describes two Dirac particle states, each
with a definite chirality. If b /=0 (if a /=0), the spinor Λ (the spinor Φ) is massive;
otherwise, it is massless. Tachyonic states are not allowed. Note: in the second
quantization [19], the current for a massive chiral state does not remain conserved
if quantized with anticommutators (see below).

Remark. In Ref. [9], the case b = 0, a /=0 was prospected. The (linear) LH massless
equation

/PΛ(x) = 0 (21)

is well known; the massive RH equation

/PΦ(x) = a [Φ(x)] C , a /=0 (22)

is ℜ-linear, and its current (19) satisfies

∂αkα(x) = −iaΦ(x)ΦC(x) − (ia)∗ [ΦC(x)]†γ0Φ(x) . (23)

Due to the antisymmetry of the matrix γ0γ5 B, each of the two terms at the right-
hand-side of Eq. (23) vanishes identically, provided the spinor components of Φ(x)
are treated as commuting quantities (which is certainly the case before second
quantization is applied). Specifically, the first term at the right-hand-side of Eq. (23)
can be expressed as follows:

−iaΦ(x)ΦC(x) = −iaΦ†(x) γ0γ5 B [Φ†(x)]♯ , (24)

where ♯ indicates transposition; the second term is similar. In a second quantization
scheme with anticommutators [19], the right-hand-side of Eq. (23) does not vanish
identically; thus, the current is not generally conserved. For this reason, Eq. (22)
does not appear to be a particularly obvious candidate for a second quantization
procedure of the standard fermionic type.
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3. Elementary solutions

It is readily verified that Eq. (22) admits simple solutions of the form

Φ(x; p) = Φ(p) exp(−ipαxα) −
a

|a |2
pβγβγ5BΦ∗(p) exp(ipαxα) , (25)

where p = {pω} are real parameters constrained by the mass-shell condition

pαgαβpβ = |a |2 . (26)

The symbol Φ(p) denotes an arbitrary complex RH four-spinor, independent of
spacetime. This may be written as

Φ(p) = dh(p)Φh (h = 1, 2), (27)

if two constant (and linearly independent) RH four-spinors Φh are introduced, and
are linearly combined by means of the arbitrary complex coefficients dh(p).

It is convenient to resolve the quadratic constraint (26) as follows:

p0 = (−1)T η E(p) , η = ±1, (28)

having defined the “unsigned” energy

E(p) =
[

|a |2 +(p1)
2 + (p2)

2 + (p3)
2
]1/2

> 0 , (29)

with p = {pℓ}. Equation (28) specifies p0 as a “positive energy” or as a “negative
energy” [7], depending on whether the sign η is positive or negative. The solutions
(25) corresponding to these two values of η are indicated below:

Φ[η](x;p) = d
[η]
h (p)Φh exp

(

−ip [η]
α xα

)

(30)

−
a

|a |2
p

[η]
β γβγ5B

[

d
[η]
h (p)Φh

]∗
exp

(

ip [η]
α xα

)

,

where

p
[η]
ℓ = pℓ , p

[η]
0 = (−1)T η E(p) , (31)

and the rest of the notation is straightforward.

4. Superpositions

Solutions that are more general than (30) are obtained by means of the super-
position

Φ(x) =
∑

η=±1

∫

Φ[η](x;p) dp , (32)
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where

dp = dp1 dp2 dp3 , (33)

with the integration rule

−∞ < pℓ < +∞ . (34)

After some algebra, Eq. (32) may be rewritten as

Φ(x) = Wh(x)Φh +
a

|a |2
γβ Wβh(x)

[

Φh
]C

, (35)

with the definitions

Wh(x) =

∫

[

fh(q) exp(−iqαxα) + g∗h (q) exp(iqαxα)
]

dq , (36)

Wβh(x) =

∫

qβ

[

gh(q) exp(−iqαxα) − f∗h (q) exp(iqαxα)
]

dq (37)

= i∂βW∗
h (x) ,

where

fh(p) = d
[+1]
h (p) , gh(p) =

[

d
[−1]
h (−p)

]∗
, (38)

and

q = p [+1] . (39)

In a more compact notation, Eqs. (30) and (35) can be reformulated as follows

Φ[η](x;p) = D
[

d
[η]
h (p)Φh exp

(

−ip [η]
α xα

)]

, (40)

and

Φ(x) = D
[

Wh(x)Φh
]

, (41)

where D indicates the operator

D = I +
a

|a |2
/PC , (42)

and C is the charge conjugation operator

CΥ(x) = [Υ(x)] C . (43)
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Remark. In a given frame of reference, it is always possible to choose the RH
spinors Φh such that

γ0
[

Φ1
]C

= Φ2 , γ0
[

Φ2
]C

= −Φ1 , (44)

[

Φh
]†

Φk = δhk (h, k = 1, 2) , (45)

where δhk is the Kronecker delta symbol. This will be useful in the following section.
It is also noted that the d, f and g coefficients (and their complex conjugates) would
be promoted to operators in second quantization [19], while the remaining quantities
in the expressions (30) and (35) would be unaffected.

5. Conclusions

The spinorial structure of the elementary solutions (30) is best exposed in a
time-forward frame of reference (T = 0), and with pℓ = 0. In that case, using
spinors Φh which satisfy Eq. (44), one obtains:

Φ[+1](x;0) =

[

f1(0) exp(−i |a| t) +
a

|a |
f∗2 (0) exp(i |a| t)

]

Φ1 (46)

+

[

f2(0) exp(−i |a| t) −
a

|a |
f∗1 (0) exp(i |a| t)

]

Φ2,

and

Φ[−1](x;0) =

[

g∗1 (0) exp(i |a| t) −
a

|a |
g2(0) exp(−i |a| t)

]

Φ1 (47)

+

[

g∗2 (0) exp(i |a| t) +
a

|a |
g1(0) exp(−i |a| t)

]

Φ2.

The number of internal degrees of freedom (counted from the number of f and
g coefficients) totals four, that is, one degree of freedom for each pair (η, h). For
a particle with a prescribed chirality, this number exceeds by a factor of two the
number of degrees of freedom expected in a more conventional Dirac theory. As for
the possibilities of second quantization [19], a bosonic scheme seems more feasible
than a fermionic one, but neither is obvious at this point.

If the particle described by Eq. (22) is a chirally RH, massive, sterile (and pos-
sibly bosonic) partner [9] of the traditional neutrino of Eq. (21), the generalization
of the formalism to curved spacetime should be considered, in order to examine
gravitational effects and establish whether Eq. (22) might be suitable for the rep-
resentation of dark matter [9, 26]. It is hoped that some clarifications on this can
be obtained in future work; the interplay of helicity and chirality may also be
investigated.
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RJEŠENJA KIRALNE DIRACOVE JEDNADŽBE

Izračunala sam masena, desno-kiralna rješenja antilinearno izmijenjene Diracove
jednadžbe. Ovo je nastavak ranijeg članka, u kojemu se takva jednadžba prvi puta
uvodi i gdje se našlo da se razdvaja u posebna stanja odred–ene (suprotne) kiralnosti,
a svako stanje je ili maseno ili bezmaseno.
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