
ISSN1330–0016

CODEN FIZBE7

FRAMEWORK FOR FINITE ALTERNATIVE THEORIES TO A QUANTUM
FIELD THEORY. II – UNITARITY
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We generalized the ’t Hooft-Veltman method of unitary regulators to put forward
a path-integral framework for finite, alternative theories to a given quantum field
theory. We demonstrated that the proposed framework is feasible by providing a
finite alternative to the quantum field theory of a single, self-interacting real scalar
field. Here we give two properties of self-energy that make the corresponding scat-
tering matrix unitary. We show that the perturbative self-energy has these two
properties at least up to the second order in the coupling constant.
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1. Introduction

In part I of this paper [1], using the path-integral formalism, we considered a
new, covariant, Lagrangian-based framework for constructing finite, alternative the-
ories to a given quantum field theory (QFT). Such theories provide solutions to the
problem of QFT ultraviolet divergencies by effecting a non-perturbative regular-
ization without resorting to discrete space-time, additional space-time dimensions,
formal auxiliary parameters, or auxiliary particles with negative metric or wrong
statistics. Such a regularization is realistic in the sense of Pauli and Villars [2].

In this paper we consider the problem of perturbative unitarity within the pro-
posed framework for a scalar case. To this end we use the cutting equations ap-
proach (Sec. 9.6 in Ref. [3]) that was put forward by Veltman ([4], and Ch. 8 in
Ref. [5]) and t’Hooft and Veltman (Sects. 4 – 7 in Ref. [6]).

In Sect. 2.1, we introduce the considered scalar case.
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In Sect. 2.2, we point out the properties of an alternative self-energy that make
the corresponding alternative scattering matrix model quantum scattering of scalar
particles of the same mass.

In Sect. 2.3, we give the properties of an alternative Lagrangian that imply the
perturbative unitarity of the alternative scattering matrix by the cutting equations
approach.

In Sect. 2.4, we show explicitly that a particular alternative Lagrangian has
such properties up to the second order of the coupling constant.

In Sect. 3, we comment on proving perturbative unitarity of the particular
alternative scattering matrix also up to all orders.

2. A scalar case

2.1. Properties of an alternative propagator

As an example let us stay with the alternative theory to the QFT of a single
real scalar field with φ4 interaction, and the corresponding alternative scattering
matrix SA we considered in Ref. [1]. The corresponding perturbative SA-matrix
is defined in terms of perturbative expansions of the alternative Green functions

G
(n)
A by the Lehmann-Symanzik-Zimmermann (LSZ) reduction formula. To obtain

perturbative expansions of the alternative momentum-space Green functions G
(n)
A ,

we can use, e.g. the following recipe [1]: (I) We write the interaction Lagrangian as

−
λ

4!
φ4 −

Z2λ0 − λ

4!
φ4 −

Z − 1

2
(∂µφ)2 −

Zm2
0 − m2

2
φ2 , (1)

where λ is a real coefficient, Z, λ0, m and m0 are also real coefficients that depend on
λ so that Z = 1, λ0 = 0 and m0 = m for λ = 0; and we use the (−1, 1, 1, 1) metric.
(II) In perturbative expansions of the QFT, Minkowskian momentum-space Green
functions corresponding to the interaction Lagrangian (1), we replace the spin 0
Feynman propagator with an alternative propagator

∆̃A(k2) = (k2 + m2 − iǫ)−1fA(k2 − iǫ) , ǫ ց 0 , k ∈ R1,3 , (2)

where: (a) the alternative regularizing factor fA(z) is an analytic function of
z ∈ C except somewhere along the segment z ≤ zd < −9m2 of the real axis;
(b) fA(−m2) = 1; (c) fA(z) is real for all z > zd, so fA(z∗) = f∗

A(z); (d) we can
estimate that for all z ∈ C,

|fA(z)| ≤ a0(1 + |z|3/2)−1 , a0 > 0 ; (3)

and that for any real z0 > zd the derivatives f
(n)
A (z) of fA(z) are such that

sup
z∈C,ℜz≥z0

(1 + |z|3/2)(1 + |z|n)|f
(n)
A (z)| < ∞ , n = 1, 2, . . . ; (4)
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and (e) we can make the coefficients of fA(z) depend on a positive cut-off parameter
Λ as specified in Sect. 3 of Ref. [1]. Within the conventional QFT framework based
on the canonical formalism, each complete, momentum space, spin 0 Feynman
propagator has the properties (a) – (c) but not (d) and (e), cf. the footnote on
p. 460 in Ref. [7].

2.2. Particle content of an alternative scalar theory

The QFT of a single, self-interacting real scalar field models scattering of scalar
particles of the same mass. Trying to find an alternative, finite theory to this QFT,
we are interested in constructing an alternative, perturbative scattering matrix
SA that is a unitary model of quantum scattering of such particles. The masses
of scalar particles whose quantum scattering is modelled by the SA-matrix are
specified by the LSZ reduction formula. For their masses to be the same, the LSZ

reduction formula requires that the analytic continuation G
(2)
A (z), z ∈ C, of the

alternative, momentum-space, two-point Green function G
(2)
A (k2), k ∈ R1,3, from

real to complex values of k2, is such that: (a) iG
(2)
A (z) is finite everywhere but

at one point, say z(λ); (b) iG
(2)
A (z) has a first-order pole at z = z(λ); (c) z(λ) is

finite and negative – the mass of scattered particles equals
√

−z(λ); and (d) The
corresponding residue is positive – otherwise SA would not be unitary unless we
introduced unphysical particles with negative metric, see Sects. 2.5 and 8 in Ref. [6];
cf. Eqs. (10.3.17 – 18) in Ref. [7].

As G
(2)
A (z) equals G

(2)
A (k2) for all real z, we have by (1) and (2),

G
(2)
A (z) = −ifA(z)/(z + m2) for all z ∈ C if λ = 0 . (5)

Thus, the alternative two-point Green function G
(2)
A (z) has above properties (a)–(d)

in the absence of interaction, i.e. for λ = 0, by (5) and the properties of fA(z).

To consider whether G
(2)
A (z) retains these properties in the presence of interac-

tions, we write

G
(2)
A (z) = −ifA(z)/[z + m2 − Π∗

A(z, λ)] , z ∈ C ; (6)

by (5) and (6),

Π∗
A(z, 0) = 0 for all z ∈ C . (7)

Let us show that G
(2)
A (z) retains the above analytic properties (a)–(d) for sufficiently

weak interactions if Π∗
A(z, λ) has the following two properties:

(A) We can estimate that

sup
z∈C

|Π∗
A(z, λ)| → 0 as λ → 0 . (8)
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(B) In a vicinity of z = −m2 and λ = 0: (a) Π∗
A(z, λ) is an analytic function of

z and λ, and (b) ℑΠ∗
A(z, λ) = 0 if ℑz = 0 and ℑλ = 0.

Namely by (A), for each ǫ1 > 0 there is an ǫ2 > 0 such that G
(2)
A (z) is finite if

|z + m2| ≥ ǫ1 and |λ| ≤ ǫ2, by (6). Furthermore, each solution zi(λ) to the mass
equation

z = −m2 + Π∗
A(z, λ) , z ∈ C , (9)

either ceases to exist as λ → 0, or

zi(λ) → −m2 as λ → 0 , (10)

because by (8) and (9) each solution zi(λ) is such that

|m2 + zi(λ)| → 0 as λ → 0 . (11)

As a consequence of (B), and of (7) and its derivative, the implicit function theorem
imples that: (i) in a vicinity of λ = 0, there is only one solution, say z(λ), to the
mass equation (9) that tends to −m2 as λ → 0 (And by (10), z(λ) is also the
only solution to the mass equation (9) in a vicinity of λ = 0.); (ii) z(λ) is an
analytic function of λ; (iii) z(λ) is real for real λ, since otherwise, z∗(λ) would be
an additional solution as [Π∗

A(z, λ)]∗ = Π∗
A(z∗, λ) if ℑλ = 0. So in a vicinity of

z = −m2 and λ = 0, iG
(2)
A (z) is analytic with a first-order pole at z = z(λ), and

for real λ, the corresponding residue

fA(z)
(
1 − ∂Π∗

A(z, λ)/∂z
)−1∣∣∣

z=z(λ)
(12)

is positive and tends to 1 as λ → 0, by (B), (7), properties of fA(z) and (10).

On the analogy with QFT, one might take Π∗
A(z(λ), λ) as the alternative self-

energy and
√
−z(λ) as the alternative renormalized mass of the scalar particle with

mass m =
√
−z(0), by (9) and (10); cf. Refs. [3], [7] and [8].

The perturbative expansion for Π∗
A(z, λ) in powers of λ is determined by

the perturbative expansion of G
(2)
A (z) in powers of λ through (6). We may calculate

it by a resumation of the perturbative expansion of G
(2)
A (z) and so conclude that

up to an arbitrary power of λ, Π∗
A(z, λ) is a power series in λ whose coefficients are

sums of truncated, one-particle-irreducible Feynman diagrams multiplied by fA(z),
cf. e.g. Eq.(10.3.14) in Ref. [7].

2.3. Perturbative unitarity

Following t’Hooft and Veltman (Sects. 4 – 7 in Ref. [6]), one can show that the
alternative perturbative SA-matrix is unitary up to any order in the coupling con-
stant λ provided: (i) The Lagrangian specifying the alternative theory is Hermitian.
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(ii) The corresponding alternative propagator ∆̃A(k2) is such that (a) it has a real
spectral function and can be decomposed into positive and negative energy parts,
and (b) there are no ultraviolet divergencies. (iii) The alternative, momentum-

space two-point Green function G
(2)
A (k2) has properties (A) and (B) specified in

the preceding section and related to the particle content of the alternative theory.

We have shown in Sect. 4 of Ref. [1] that there are alternative, Hermitian La-

grangians such that the corresponding alternative propagators ∆̃A(z) have the prop-
erties (2) up to (3), which imply the above properties in (ii). By maximum modulus

theorem we can infer that the alternative propagator ∆̃A(z), given as an example
in Sect. 4 of Ref. [1], has also the property (4).

In the following section, we will show up to the second order in λ that the

properties (2) – (4) of the alternative propagator ∆̃A(k2) suffice to make Π∗
A(z, λ)

have properties (A) and (B) specified in Sect. 2.2; and so they suffice to make the
perturbative expansion of SA unitary up to the same order.

2.4. Properties of Π∗

A
(z, λ) up to the second order in λ

By (2), for the case considered, the Wick rotation is possible, cf., e.g. Sect. 9.2
in Ref. [3] and Ref. [7]. On assuming that

Z = 1 − λ2Z2 + . . . ,

Z2λ0 = λ + λ2L2 + . . . , (13)

Zm2
0 = m2 − λM1 − λ2M2 + . . . ,

we calculate that up to the second order in the coupling coefficient λ the alternative
self-energy

Π∗
A(q2, λ) = λAfA(q2) + λ2[B + I(q2) − q2Z2]fA(q2) + . . . , (14)

where

A = M1 −
1

2

∫
d4k

(2π)4
∆̃A(k2) , (15)

B = M2 −
1

2
A

∫
d4k

(2π)4
∆̃2

A(k2) −
1

2
L2

∫
d4k

(2π)4
∆̃A(k2) , (16)

I(q2) =
1

6

∫
d4l

(2π)4

∫
d4k

(2π)4
∆̃A((k − q)2)∆̃A((k − l)2)∆̃A(l2) , (17)

where k, l, q ∈ R4, and ǫ = 0. That I(q2) and Π∗
A(q2, λ) depend only on q2

follows from the R4-rotational invariance of alternative propagators in (17), because
for q ∈ R4 all integrands in (15) – (17) are absolutely integrable, by (3). (The
coefficients M1, Z2, L2 and M2 depend on the cut-off parameter Λ in such a way
that Π∗

A(q2, λ) remains finite in the limit Λ → ∞.)
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Now we have to consider the analytic continuation Π∗
A(z, λ) of Π∗

A(q2, λ) defined
by (14) – (17). To this end we use a complex variable z̃ ∈ C and replace q ∈ R4

with

q̃ ≡ (z̃, 0, 0, 0) (18)

in the rhs. of (14) and rhs. of (17). We then consider analytic properties of the

function Ĩ(z̃), z̃ ∈ C, which is defined by the rhs. of (17) with q = q̃, to verify that:

(i) Ĩ(z̃) depends in fact only on the complex variable

z = z̃2 . (19)

(ii) Ĩ(z̃) is such an extension of I(q2) that the corresponding Π∗
A(z, λ) satisfies

requirements (A) and (B) of Sect. 2.2 up to the second order in λ. We will introduce
three transformations of Euclidean four-integrals in (17) to construct forms suitable
to this end.

An estimate of |Π∗
A(z, λ)|. Let us derive an estimate of |Ĩ(z̃)|, valid for all

z̃ ∈ C. For a given z̃ = x̃ + iỹ, x̃, ỹ ∈ (−∞,∞), we introduce the subset Sα of
Euclidean four-vectors k = (k0,k),

Sα ≡ {k0 ∈ [x̃ − α, x̃ + α] , k
2 ∈ [ỹ2

2 − m2 − α2, ỹ2 − m2 + α2]} ⊂ R4 (20)

with a positive parameter α < (−zd − m2)1/2; so for all q̃ we can estimate

|∆̃A((k − q̃)2)| ≤ α−2a0 if k /∈ Sα ,

ℜ(k − q̃)2 > zd if k ∈ Sα . (21)

We integrate rhs. of (17) with q = q̃ by parts with respect to k0 at each k ∈
Sα. Using the characteristic function χ(k ; z̃) that equals one if k ∈ Sα and zero
otherwise, we construct the following result

Ĩ(z̃) =
1

6

∫
d4k

(2π)4

∫
d4l

(2π)4

{
[1 − χ(k ; z̃)]∆̃A((k − q̃)2)∆̃A((k − l)2) (22)

+ χ(k ; z̃)
[
(E1F0 − E0F1)(δ(k0 − x̃ − α) − δ(k0 − x̃ + α)) + E0F2]

}
∆̃A(l2) ,

where

En =
i

2
(k2 + m2)−1/2 ∂n

∂kn
0

{
(k0 − q−) ln(k0 − q−) − (k0 − q+) ln(k0 − q+)

− [(q1 − q−) ln(q1 − q−) − (q1 − q+) ln(q1 − q+)]
}

,

Fn =
∂n

∂kn
0

fA((k − qc)
2)∆̃A((k − l)2) , (23)

q± = z̃ ± i(k2 + m2)1/2 .
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Taking into account (21), (4), and

sup
z̃∈C

sup
k∈Sα

|E0| < ∞ , (24)

sup
z̃∈C

sup
k∈Sα

|E1|
∣∣∣
k0=x̃±α

< ∞ , (25)

we see that (i) the integrand in (22) is absolutely integrable (and so is the integrand
in rhs. of (17) with q = q̃), (ii)

sup
z̃∈C

|Ĩ(z̃)| < ∞ , (26)

(iii) we may change integration variables in rhs. of (17) with q = q̃, and (iv)

Ĩ(−z̃) = Ĩ(z̃) , (27)

by (2) and (18), i.e., Ĩ(z̃) depends only on z = z̃2.

So by (26), (27), (14) – (17) and (2) – (3), Ĩ(z̃) is such an extension of I(q2) that
the self-energy Π∗

A(z, λ) is bounded up to the second order in the coupling constant
λ as required by condition (A) in Sect. 2.2.

Analyticity of Π∗
A(z, λ). Applying Landau equations to (17), we see that as

long as (ℑz̃)2 < −zd, Ĩ(z̃) may have only four singularities: the ones at z̃ = ±im,
and the ones at z̃ = ±3im.

Let us show in four steps that Ĩ(z̃) is analytic in a vicinity of z̃ = ±im:

(A) Introducing Feynman parameters in (absolutely integrable) rhs. of (17) with
q = q̃ and changing integration variables, we get

Ĩ(z̃) =
1

6

∫
d4k

(2π)4

∫
d4l

(2π)4

1∫

0

dα

1∫

0

dβ I1(α, β, k, l, q̃,m2) , (28)

where

I1(α, β, k, l, q̃,m2) = 2α[D(α, β, k2, l2, q̃2,m2)]−3fA(p2
1)fA(p2

2)fA(p2
3) ,

D(α, β, k2, l2, z,m2) = αk2 + b(α, β)l2 + c(α, β)z + m2 ,

b(α, β) = 1 − α + αβ(1 − β) ∈ [0, 1] ,

c(α, β) = αβ(1 − α)(1 − β)/b ∈ [0, 1/9] , (29)

p1 = k + (1 − β)l + [(1 − α)(1 − β)/b]q̃ ,

p2 = l − [αβ(1 − β)/b]q̃ ,

p3 = k − βl − [(1 − α)β/b]q̃ ,
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since q̃2 = z. Note that

(1 − α)(1 − β) , αβ(1 − β) , (1 − α)β ∈ [0, b(α, β)] . (30)

(B) By (29), the expression D(α, β, k2, l2, z,m2) /=0 for each

z ∈ C′ ≡ {z : |ℑz| ≥ ǫ′} ∪ {z : ℜz ≥ −9m2 + ǫ′} (31)

at any ǫ′ > 0. So the integrand I1(α, β, k, l, q̃,m2) in rhs. of (28) is an analytic
function of z̃ if z̃2 ∈ C′ and (ℑz̃)2 < −zd (since then ℜp2

i > zd, i = 1, 2, 3, by (29)
and (30)).

(C) We use (3) and the estimate

|(k − q̃)2 + m2| ≥ m2 − (|z| − ℜz)/2 for all k ∈ R4, (32)

to infer that for q = q̃ the integrand in (17) is absolutely integrable, and

|Ĩ(z̃)| ≤ (16π)−2a3
0

/
6[1 − (ℑz)2/2m2(|z| + ℜz)] (33)

provided

(ℑz)2 < 2m2(|z| + ℜz) . (34)

(D) In relations (17), (28), (33), and (34), we replace m2 with

m2
1 = m2 + |z| (35)

to make (33) and (34) true for all z ∈ C. Then we take into account that for any
z ∈ C′ we have

r(z) ≡ sup
α,β,k2,l2

|D(α, β, k2, l2, z,m2
1)/D(α, β, k2, l2, z,m2)|3 < ∞ (36)

to infer that for all z ∈ C′: (a) the integrand I1(α, β, k, l, q̃,m2) in (28) is absolutely
integrable, and (b) we can estimate that

|Ĩ(z̃)| ≤ (16π)−2a3
0r(z)(m2 + z)/6[m2 + (|z| + ℜz)/2] . (37)

By (a), (30), Cauchy’s integral representation of an analytic function and Fubini’s

theorem, we can infer from (28) that Ĩ(z̃) is an analytic function of z̃ provided
z̃2 ∈ C′ and (ℑz̃)2 < −zd. So

ℑĨ(z̃) = 0 for all z̃2 > −9m2 , (38)

since Ĩ(z̃) is analytic for all z̃2 > −9m2 and since Ĩ(z̃) = I(q2) and ℑI(q2) = 0 for
all q2 ≥ 0, by (17).

As a consequence, Ĩ(z̃) is such an analytic extension of I(q2) that the self-energy
Π∗

A(z, λ) satisfies the condition (B) of Sect. 2.2 up to the second order in λ, by (14)
– (17), (2) – (3), (27), and (28) – (38).
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3. Comments

We have shown in Sect. 2.4 that the analytic properties (2) – (4) of the al-

ternative propagator ∆̃A(k2) endow the alternative self-energy Π∗
A(z, λ) with the

properties (A) and (B) in Sect. 2.2 at least up to the second order in the coupling
constant λ. So the alternative scattering matrix SA is unitary at least up to the
same order.

The question remains whether the analytic properties (2) – (4) of ∆̃A(k2) suffice
for proving the unitarity of SA to all orders in λ.

That they suffice to all orders in λ to make Π∗
A(z, λ) such a bounded function

as required by condition (A) in Sect. 2.2 can be seen as follows. First we modify
each diagram so that: (i) it has the least possible number of internal lines that
carry the external momentum q, and (ii) each such line carries only one internal
momentum. Then we estimate each so modified diagram on the analogy to the
method (20)–(27) we used to estimate the setting sun diagram (17).

They likely suffice also to make Π∗
A(z, λ) to all orders in λ such an analytic

function as required by condition (B) in Sect. 2.2, but we lack a formal proof.
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OSNOVA ZA KONAČNE INAČNE TEORIJE KVANTNOJ TEORIJI POLJA.
II – UNITARNOST

Poopćili smo ’t Hooft-Veltmanovu metodu unitarnih regulatora radi postavljanja
osnove za integrale po putevima za konačne, inačne teorije dane kvantne teorije
polja. Pokazali smo da je predložena osnova moguća jer se nalazi konačna inačica
kvantnoj teoriji izdvojenog, samodjelujućeg realnog skalarnog polja. Dajemo dva
svojstva svojstvene energije koja čine odnosnu matricu raspršenja unitarnom.
Pokazujemo da svojstvena energija smetnje ima ta dva svojstva barem do drugog
reda stalnice vezanja.
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