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The quark-level linear σ model (LσM) is employed to compute a variety of elec-
tromagnetic and weak observables of light mesons, including pion and kaon form
factors and charge radii, charged-pion polarizabilities, semileptonic weak Kℓ3 decay,
semileptonic weak radiative pion and kaon form factors, radiative decays of vector
mesons, and nonleptonic weak K2π decay. The agreement of all these predicted
observables with experiment is striking. In passing, the tight link between the LσM
and vector-meson dominance is shown. Some conclusions are drawn on the LσM in
connection with lattice and renormalization-group approaches to QCD.
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1. LσM and chiral Goldberger-Treiman relations

The NJL [1] and Z = 0 compositeness [2] relations mσ = 2m̂ and g = 2π/
√

Nc ,

with m̂ ∼ MN/3 and meson-quark coupling g = 2π/
√

3 = 3.628, follow by nonper-
turbatively solving [3] the strong-interaction Nambu-type gap equations δfπ = fπ

and δm̂ = m (where fπ is the pion decay constant and m̂ is the nonstrange con-
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stituent quark mass) in quark-loop order, regularization schemes. For a more de-
tailed description of the quark-level LσM, see Ref. [4], or the Appendices of Ref. [5].
Here, we collect instead powerful results of the LσM on meson form factors and
related data for strong, e.m., and weak interactions.

This chiral LσM is based on the quark-level pion and kaon Goldberger–Treiman
relations (GTRs) fπg = m̂ = (mu+md)/2 and fKg = (ms+m̂)/2, for fπ ≈ 93 MeV
(fπ ≈ 90 MeV in the chiral limit (CL) [6]), fK/fπ ≈ 1.22, and ms ≈ 1.44 m̂. We
begin in Sec. 2 by studying meson vector form factors and their measured charge
radii. In Sec. 3 we survey charged-pion polarizabilities for γγ → ππ, and compare
the results with the LσM predictions. In Sec. 4 we study the semileptonic weak Kl3

decays and the form factor f+(k2) evaluated at k2 = 0. Then in Sec. 5 we examine
the radiative semileptonic weak form factors for π+ → e+νγ and K+ → e+νγ
decays, with the observed pion second axial-vector form factor implying a pion
charge radius rπ ∼ 0.6 fm, also found in Sec. 2 from data [7] and from the theoretical
LσM. In Sec. 6 we return to the LσM and its link with vector-meson dominance
(VMD). Finally, in Sec. 7 we begin by studying the ∆I = 1/2 rule for two-pion
decays of the kaon in connection with the σ as the pion’s chiral partner, and end
by showing that the mass of the now experimentally confirmed scalar κ meson is
consistent with the observed K→ 2π decay rate. We summarize our results and
draw our conclusions in Sec. 8.

2. Meson vector form factors and charge radii

The charged-pion and kaon e.m. vector currents are defined as

〈π+(q′)|V µ
em(0)|π+(q)〉 = Fπ(k2) (q′ + q)µ ,

〈K+(q′)|V µ
em(0)|K+(q)〉 = FK(k2) (q′ + q)µ ,

(1)

with kµ = q′µ − qµ. The former pion form factor Fπ(k2) can be nonperturbatively
characterized, through the LσM bootstrap, by the (constituent) quark udu and dud
loop graphs of Fig. 1a, while the charged-kaon form factor FK(k2) is in a similar
manner determined by the usu and sus loop graphs depicted in Fig. 1b. Even if
each of the diagrams in Fig. 1 appears to be linearly divergent by naive power
counting, gauge invariance enforces every single quark triangle (QT) to be merely
logarithmically divergent. For details of the evaluation of these QT diagrams, see
Ref. [5].

The QT expressions [5] in the CL (i.e. M → 0) should be compared to the CL
non-perturbative LσM [3, 8] or NJL [9] results

Fπ(k2)CL
LσM = −4ig2Nc

1
∫

0

dx

∫

d−4p
[

p2 − m̂2 + x(1 − x)k2
]

−2

, (2)

FK(k2)CL
LσM = −4ig2Nc

1
∫

0

dx

∫

d−4p
[

p2 − m2
us + x(1 − x)k2

]

−2

, (3)
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Fig. 1. VPP quark triangle graphs.

where mus = (ms + m̂)/2 and d−4p = d4p (2π)−4. The logarithmic diver-
gence of these expressions has been guaranteed through a rerouting procedure
[8, 10]. When k2 = 0, these form factors become automatically normalized to unity,
due to logarithmically divergent gap equations (LDGEs) [10, 11, 5], the GTRs in
Sec. 1, and the definition of the pion and kaon decay constants

〈

0|Aµ
3 |π0

〉

= ifπqµ,
〈

0|Aµ
4−i5|K+

〉

= i
√

2fKqµ, with fπ ≈ 93 MeV and fK/fπ ≈ 1.22 [3, 10].

To proceed, given Eqs. (2) and (3), the π+ and, as an obvious SU(3) extension,
K+ charge radii are computed in the LσM as

〈

r2
π+

〉CL

LσM
= 6

dFπ(k2)

dk2

∣

∣

∣

∣

k2=0

=
8iNc

(2π)4
g2

(−iπ2

2m̂2

)

=
Nc

4π2f2
π

≈ (0.61 fm)2 , (4)

〈

r2
K+

〉CL

LσM
= 6

dFK(k2)

dk2

∣

∣

∣

∣

k2=0

=
8iNc

(2π)4
g2

(−iπ2

2m2
us

)

=
Nc

4π2f2
K

≈ (0.49 fm)2 . (5)

Here we have evaluated the charge radii in the CL [3, 6, 12], with fCL
π ≈ 90 MeV,

fCL
K ≈ 110 MeV. If, on the other hand, we compute these charge radii using the

detailed QT graphs in the CL, we get for the π+ exactly the same result as in
Eq. (4), while for the K+ a complicated function of m̂ and ms is obtained [5, 13].
We may then expand the latter function in terms of the SU(3)-breaking parameter
δ = (ms/m̂) − 1 ≈ 0.44, resulting in an expression previously derived in Ref. [14].
Taking into account the first three terms of this expansion, we may estimate the
ratio rK/rπ to be

〈

r2
K+

〉

/
〈

r2
π+

〉

≈ 1 − 5δ/6 + 3δ2/5 ≈ 0.750, or 〈rK+〉 / 〈rπ+〉 ≈
0.866. Here we note that the observed pion charge radius is [7] rπ = (0.642±0.002)
fm, and the analogue charged-kaon charge radius is [15] rK = (0.560± 0.031) fm. If
we take the experimental value rπ+ ≈ 0.64 fm, the latter ratio implies 〈rK+〉 ≈ 0.556
fm, which is in agreement with experiment. On the other hand, if we were to take
the full, unexpanded expression for

〈

r2
K+

〉

[5], we would get 〈rK+〉 ≈ 0.545 fm,
being still compatible with experiment.
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Finally, note that the above field-theory versions of the charged-pion form factor
can be recovered in an even simpler fashion by using a once-subtracted dispersion
relation for the pion charge radius, yielding in the CL [3] r2

π = Nc/4π2(fCL
π )2 =

1/m̂2, where we use the GTRs of Sec. 1, along with g = 2π/
√

Nc from Sec. 1.
This suggests that the tightly bound “fused” q̄q pion charge radius in the CL
is rCL

π = 1/m̂ = (197.3 MeV fm)/(325 MeV) ≈ 0.61 fm, with m̂CL ≈ 325 MeV
∼ MN/3, as expected from the GTR mCL = fCL

π g ≈ 90 MeV× 3.628 ≈ 325 MeV.

3. Charged-pion polarizabilities for γγ → ππ

Analyzing Crystal-Ball [16], MARK-II [17] and CELLO [18] γγ → ππ data,
Kaloshin et al. [19 – 21] obtain for the charged electric pion polarizability απ+ =
(2.75± 0.50)× 10−4 fm3. The LσM prediction follows from the model-independent
value [22], given by απ+ = (α/8π2mπf2

π)γ, where γ ≡ FA(0)/FV(0). In Sec. 5 we
find γ = 2/3. Hence, the LσM result αLσM

π+ = α/12π2mπf2
π ≈ 3.9 × 10−4 fm3 is

reasonably near the data above. Moreover, if we extend the LσM to SU(3), the
prediction for γ becomes γLσM

SU(3)
≈ 0.58 (see Sec. 5), yielding αLσM

π+ ≈ 3.4×10−4 fm3,

which is closer to the experimental value. Besides, the latter two LσM values for απ+

are also compatible with, e.g., the prediction 3.6×10−4 fm3 of a quark confinement
model that gives good results for heavy-meson semileptonic form factors [23], too.

Another consistency check is the detailed quark-plus-meson-loop analysis
αLσM

π+ = α/8π2mπf2
π − α/24π2mπf2

π = α/12π2mπf2
π [24], requiring γLσM = 2/3

from the model-independent value of απ+ above.

Finally we comment on low-energy γγ → 2π0 scattering, where there is no pole
term, and the neutral polarizabilities απ0 , βπ0 are much smaller than απ+ , βπ+ . In
Ref. [25] it was shown that a γγ → 2π0 cross section of ∼ 10 nb (generated by a
σ(700) meson pole) reasonably anticipated the later 1990 Crystal-Ball data [16] in
the 0.3 – 0.7 GeV range.

4. Semileptonic weak Kℓ3 decay and form-factor scale

f+(0)

The semileptonic weak K+ → π0e+ν (Kℓ3) decay width is measured as [15]

ΓK+
→π0e+ν =

h̄

τK+

(4.87 ± 0.06)% = (25.88 ± 0.32) × 10−16 MeV . (6)

Taking a q2 form-factor dependence f+(q2) = f+(0)[1 + λ+q2/m2
π], the standard

V – A (vector here) weak current predicts a Kℓ3 decay width (y = m2
π0/m2

K+ ,
me = mν = 0; see also Ref. [26])

ΓK+
→π0e+ν =

G2
F |Vus|2 m5

K+

2π3 768
f2
+(0)

(

0.5792 + 0.1600
m2

K+

m2
π0

λ++0.01770
m4

K+

m4
π0

λ2
+

)
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=f2
+(0) (25.90 ± 0.07) × 10−16 MeV , (7)

where GF = 11.6639×10−6 GeV−2, Vus = 0.2196±0.0026, and λ+ = 0.0278±0.0019
[15]. If we neglect here the term quadratic in λ+, as e.g. done in Ref. [26], the
leading factor in Eq. (7) becomes 25.80 instead of 25.90. Moreover, accounting
for a nonvanishing electron mass yields a totally negligible correction of the order
of 0.001%. In any case, comparison with the data in Eq. (6) clearly shows that
the form-factor scale f+(0) must be near unity. However, electroweak radiative
corrections to Γ(K+ → π0e+ν) are not negligible on the scale of the experimental
errors in Vus and λ+, giving rise to an enhancement of |Vus| by more than 2% [27],
suggesting that f+(0) should be a trifle less than unity.

As a matter of fact, the nonrenormalization theorem [28] requires the form factor
f+(q2) to be close to unity when q2 = 0. Furthermore, in the infinite-momentum
frame (IMF), tadpole graphs are suppressed and so [29] 1 − f2

+(0) = O(δ2) ≈ 6%
is second order in SU(3)-symmetry breaking. Of similar order are, for example,
(mπ/mK)2 = 7.7%, and (1 − fK/fπ)2 = 5%, for fK/fπ = 1.22.

u
K

+ u

s

V 4−i5

ν

e

π

+

0

Fig. 2. Quark-loop contribution to K+ → π0e+ν.

Next we follow the (constituent) quark-model triangle graph of Fig. 2, with
√

2
〈

π0|V 4−i5
µ |K+

〉

= f+(t)(pK + pπ)µ + f−(t)(pK − pπ)µ . (8)

Note that, for this process, the f− form factor can be disposed of, since it is
weighted by me ≪ mK [26], giving rise to a m2

e/m2
K suppression of the corre-

sponding contributions to Γ(K+ → π0e+ν). To test SU(2)-symmetry breaking in
Kℓ3 decays as in Eqs. (7) and (8) above, we note the present data consistency [15] of
λ+(K+

e3) = 0.0278 ± 0.0019, λ+(K0
e3) = 0.0291 ± 0.0018, λ+(K+

µ3) = 0.033 ± 0.010,

and λ+(K0
µ3) = 0.033 ± 0.005. Then, expanding in the SU(3)-breaking parame-

ter δ = (ms/m̂) − 1 (as already used in Sec. 2) and working in the soft-pion CL,
the Feynman graph of Fig. 2 predicts [30] (recall the value of the meson-quark
coupling g ≈ 3.628 in Sec. 1) f+(0) = 1− g2δ2/8π2 ≈ 0.968. This value slightly be-
low unity is not only in agreement with the nonrenormalization theorem above, as
1 − f2

+(0) = 1 − (0.968)2 = 6.3%, but also quantitatively compatible with Eqs. (6)
and (7), if we account for the mentioned radiative corrections contributing with
about −1.5% to f+(0), and the experimental errors in Vus and λ+. Here, we should
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add that using unitarity of the CKM matrix and the present experimental value for
|Vud| [15] would result in an about 4% larger value for |Vus| (see Ref. [27], second
paper), thus calling in question the small error bars in |Vus|, and lending extra
support to our conclusion that f+(0) is somewhat less than unity.

5. Semileptonic weak radiative form factors for

π+ → e+νγ and K+ → e+νγ

From Ref. [15], the π+ → e+νγ and K+ → e+νγ matrix elements are

MV =
−eGF Vqq′√

2 mP

ǫµℓνFP
V ǫµνστ kσqτ , (9)

MA =
−ieGF Vqq′√

2 mP

ǫµℓν{FP
A [(s − t)gµν − qµkν ] + RPt gµν} , (10)

where Vqq′ is the corresponding Cabibbo-Kobayashi-Maskawa (CKM) mixing-
matrix element, ǫµ is the photon polarization vector, ℓν is the lepton-neutrino
current, q and k are the meson and photon four-momenta, respectively, with
s = q · k, t = k2, and P stands for π or K. The weak vector (pion) form fac-
tor Fπ

V in Eq. (9) and the second axial vector form factor Rπ in Eq. (10) are model
independent [31], with Fπ

V determined only by conserved vector currents (CVC),
and Rπ related via the pion charge radius (rπ = 0.642 ± 0.002 fm) to partially
conserved (pion) axial currents (PCAC). Specifically, Fπ

V was long ago determined

by CVC [31], viz. Fπ
V(0) =

√
2mπ+/8π2fπ ≈ 0.027, reasonably close to data [15]

0.017±0.008. Furthermore, PCAC predicts (PCAC is manifest in the LσM [32, 33])
Rπ = mπ+fπ+r2

π+/3 = 0.064±0.001, where fπ+ = 130.7±0.1 MeV [15] and we use

rπ+ = 0.642 ± 0.002 fm. The latter prediction is near data [34] Rπ = 0.059+0.009
−0.008 .

To apply the LσM theory, we consider the quark-plus-meson-loop graphs of
Fig. 3. Then the ratio γ = FA(0)/FV(0) is predicted as [35] γLσM = 1 − 1/3 =

2/3, with Fπ
A(0) =

√
2mπ[(8π2fπ)−1 − (24π2fπ)−1] =

√
2mπ/12π2fπ ≈ 0.0179.

So this form-factor ratio divided by the CVC value of Fπ
V(0) above gives γLσM =

0.0179/0.027 ≈ 0.66, compatible with 2/3 and with data [15]: γdata = (0.0116 ±
0.0016)/(0.017 ± 0.008) = 0.68 ± 0.33. With hindsight, this ratio γLσM = 2/3 is
near the original current-algebra (CA) estimate 0.6 found in Ref. [36], and exactly
the same γ found in Sec. 3 from the LσM.

Extending the above LσM picture to SU(3) symmetry, we first assume a scalar
nonet pattern below 1 GeV (e.g., f0(600) (σ), κ(800), f0(980), a0(980)) as found
from a kinematic IMF scheme [37], or from a dynamical coupled-channel unitarized
model [38]. Then, inclusion of a0a0ηNS

(“NS” means nonstrange), KKκ, and κκK
meson-loop graphs, besides the ππσ graph of Fig. 3, lowers the prediction for γ
to γLσM

SU(3)
≈ 0.58 [39], which is still in accordance with data and the CA estimate.
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Fig. 3. Quark- and meson-loop contribution to π+ → γe+ν.

Coming now to the K+ → e+νγ form factor, an SU(3) LσM quark-plus-meson-loop
analysis, involving uus, ππκ, a0a0K, KKf0(980), κκη

S
(“S” stands for strange),

KKa0, κκπ, KKσ, and κκη
NS

loops, predicts [39], at k2 = 0, |FK
V (0)+FK

A (0)|LσM ≈
0.109 + 0.044 = 0.153, close to the K+ → e+νγ data [15] |FK

V (0) + FK
A (0)|data =

0.148± 0.010. An SU(3) LσM theory is reasonably detailed [11] due to resonances
below 1 GeV, but the LσM kaon form-factor sum is easily tested via the data. The
same is true for the pion form-factor values above, partly based on the measured
pion charge radius [7] rπ = 0.642 ± 0.002 fm.

6. VMD: LσM via VPP and VPV or PVV loops

We first confirm the (crucial) value of the pion charge radius [7] rπ =
0.642 ± 0.002 fm via Sakurai’s vector-meson-dominance (VMD) prediction [40]

rπ =
√

6/mρ ≈ 0.63 fm. Recall that the tightly bound q̄q chiral pion in Sec. 2,
with constituent quark mass m̂ ≈ 325 MeV (near m̂ ≈ MN/3), has CL charge ra-
dius rCL

π = 1/m̂ ≈ 0.61 fm. So the close agreement with Sakurai’s value means we
must take the VMD scheme along with the LσM as the basis of our chiral theory.

The ρ0 form factor predicts, from udu+ dud quarks loops in the CL (see Fig. 4),

gρππ = −i4Nc g2gρ

∫

d−4p (p2 − m̂2)−2 = gρ ,

by virtue of the LDGE [10]. Then, folding in the mesonic π-σ-π loop changes
the VMD prediction only slightly to [12] gρππ = gρ + gρππ/6 = (6/5)gρ, compatible
with the observed couplings gρππ ≈ 6.04 and gρ ≈ 5.01, since (for pCM = 358 MeV)

Γρππ =
p3
CM g2

ρππ

6πm2
ρ

= 149.2 ± 0.7 MeV =⇒ gρππ ≈ 6.04 (11)

Γρee =
e4 mρ

12πg2
ρ

= 6.85 ± 0.11 keV =⇒ gρ ≈ 5.01 , (12)

with e ≈ 0.3028 (i.e., α ≈ 1/137). Also, the quark-loop VPV or PVV (see Fig. 5)
amplitudes are [41], using ΓVPV = p3|FVPV|2/12π,

|F (ρ→πγ)| =
egρ

8π2fπ

≈ 0.207 GeV−1 , |F (ω→πγ)| =
egω

8π2fπ

≈ 0.704 GeV−1 ,
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Fig. 5. PVV quark triangle graphs for ρ → πγ, ω → γπ0, and π0 → γγ.

∣

∣F (π0→2γ)
∣

∣ =
α

πfπ

=
e2

4π2fπ

≈ 0.025 GeV−1 , (13)

for gρ ≈ 5.01 and gω ≈ 17.06, very close to the data 0.222 ± 0.012 GeV−1 [15],
0.698 ± 0.014 GeV−1 [42] and 0.0252 ± 0.0009 GeV−1 [15], respectively. Equiv-
alently, VMD predicts at tree level |Fρπγ | e/gρ = |Fωπγ | e/gω = |Fπ0γγ |/2, then
compatible with the LσM quark loops in Eq. (13).

7. Nonleptonic weak K2π ∆I = 1/2 rule and σ, κ mesons

The well-known [15] ∆I = 1/2 rule Γ(KS → π+π−)/Γ(K+ → π+π0) ≈ 450 for
nonleptonic weak K2π decays suggests [43] that the parity-violating (PV) amplitude
〈2π|Hpv

w |KS〉 could be dominated by the ∆I = 1/2 weak transition 〈σ|Hpv
w |KS〉.

The σ-pole graph of Fig. 6, with LσM coupling 〈2π|σ〉 = m2
σ/2fπ for mσ near mK

and Γσ ∼ mσ, predicts [44]

| 〈2π|Hpv
w |KS〉 | =

∣

∣

∣

∣

2 〈2π|σ〉 〈σ|Hpv
w |KS〉

m2
K
− m2

σ + imσΓσ

∣

∣

∣

∣

≈ 1

fπ

|〈σ|Hpv
w |KS〉| . (14)

But pion PCAC (manifest in the LσM) requires, using the weak chiral commutator
[Q5 + Q,Hw] = 0,

| 〈2π|Hpv
w |KS〉 | → f−1

π | 〈π|[Qπ
5 ,Hw]|KS〉 | ≈ f−1

π

∣

∣

〈

π0|Hpc
w |KL

〉∣

∣ , (15)

with both pions being consistently reduced in Ref. [45]. To reconfirm Eq. (15), one
considers the ∆I = 1/2 weak tadpole graph, giving

| 〈2π|Hpv
w |KS〉 | = m−2

K
| 〈0|Hw|KS〉 〈KS 2π|KS〉 | , (16)
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PV
K S σ

π

π
Fig. 6. Parity-violating two-pion decay of KS dominated by σ pole.

and then one invokes the Weinberg-Osborn [46] strong chiral coupling | 〈KS 2π|KS〉 | =
m2

KS
/2f2

π , together with the usual PCAC relation |〈0|Hpv
w |KS〉| = |2fπ

〈

π0|Hpc
w |KL

〉

|,
to recover Eq. (15) [47].

In either case, equating Eqs. (14) and (15) gives |〈σ|Hpv
w |KS〉| ≈

∣

∣

〈

π0|Hpc
w |KL

〉∣

∣,
suggesting that the π and σ mesons are “chiral partners”, at least for nonleptonic
weak interactions. But of course, Secs. 1–6 above also show that the π and the
σ are chiral partners for strong, e.m., and semileptonic weak interactions, as well.
To compare this chiral-partner K → π transition with K2π data, we return to the
PCAC equation (15) to write, for fπ ≈ 93 MeV,

| 〈2π|Hpv
w |KS〉 | ≈ 1

fπ

∣

∣

〈

π0|Hpc
w |KL

〉
∣

∣ ≈ 38 × 10−8 GeV , (17)

midway between the observed KS → π+π− and KS → π0π0 amplitudes

∣

∣M+−

KS→ππ

∣

∣

PDG
= mKS

[

8πΓKS
+−

q

]
1
2

= (39.1 ± 0.1) × 10−8 GeV , (18)

∣

∣M00
KS→ππ

∣

∣

PDG
= mKS

[

16πΓKS
00

q

]
1
2

= (37.1 ± 0.2) × 10−8 GeV , (19)

suggesting |
〈

π0|Hpc
w |KL

〉

| ≈ 3.58 × 10−8 GeV2. In fact, when one statistically
averages eleven first-order weak data sets for KS → 2π, K → 3π, KL → 2γ,
KL → µ+µ−, K+ → π+e+e−, K+ → π+µ+µ−, and Ω− → Ξ0π−, one finds [48]

∣

∣

〈

π0|Hpc
w |KL

〉∣

∣ =
∣

∣

〈

π+|Hpc
w |K+

〉∣

∣ = (3.59 ± 0.05) × 10−8 GeV2 . (20)

To induce theoretically at the quark level the ∆I=1/2 s → d single-quark-line (SQL)
transition scale βw in a model-independent manner, one considers the second-order
weak (see Fig. 7) KL−KS mass difference ∆mLS diagonalized to [49]

2β2
w =

∆mLS

mK

= (0.70126 ± 0.00121) × 10−14

=⇒ |βw| ≈ (5.9214 ± 0.0051) × 10−8 . (21)

FIZIKA B 13 (2004) 1, 43–56 51



scadron et al.: meson form factors in the quark-based linear . . .

s0
K K

0

d s

d

Fig. 7. K̄0 ↔ K0 SQL graph. Each dot represents the SQL weak scale βw.

Then using Eq. (21), one predicts from the soft-meson theorem, or from Cronin’s
chiral Lagrangian [50],

∣

∣

〈

π0|Hpc
w |KL

〉∣

∣ = 2βwm2
KL

f−1
π fK = (3.5785 ± 0.0031) × 10−8 GeV2 , (22)

given fK/fπ ≈ 1.22. This SQL scale βw in Eq. (21) and the K → π weak ampli-
tude in Eq. (22) (or in Eq. (20)), correspond to a “truly weak” interaction, which
Weinberg [51] shows cannot be transformed away in the electroweak standard
model. To test the latter weak scale (22) (or the similar data averages (20)), we first
re-express the neutral chiral-partner relation (extended to the κ transition [44]) as

〈

π0|Hpc
w |K0

〉

=
〈

σ|Hpv
w |K0

〉

=
〈

π0|Hpv
w |κ0

〉

=
3.58√

2
× 10−8 GeV2 .

We fix this κ0 → π0 weak transition to the weak PV K0 tadpole graph of Fig. 8,
via the K0 → vacuum PCAC scale, as

∣

∣

〈

0|Hpv
w |K0

〉∣

∣ = 2f2
π

∣

∣

〈

2π0|Hpv
w |K0

〉∣

∣ /(1 −
m2

π/m2
K) = 0.51 × 10−8 GeV3, using

∣

∣

〈

2π0|Hpv
w |K0

〉∣

∣ = 26.26 × 10−8 GeV
from data, while eliminating the 4% ∆I = 3/2 component (see Ref. [51],
third paper). Then Fig. 8 predicts the amplitude magnitude

∣

∣

〈

π0|Hpv
w |κ0

〉
∣

∣ =
∣

∣

〈

0|Hpv
w |K0

〉
∣

∣ gκ0K0π0/m2
K0 ≈ 2.53× 10−8 GeV2, scaled to the latter neutral chiral-

partner relation, provided one uses the LσM coupling, for fπ = 92.4 MeV [15],
|gκ0K0π0 | = m2

κ − m2
K/4fπ = 1.229 GeV, corresponding to a κ mass of 838 MeV.

This value is not too distant from our earlier mκ = 730–800 MeV predictions
[37, 38], and the very recent E791 observed mass mκ ≈ 800 MeV [52]. Moreover,
the SU(3) analogue |gσππ| = (m2

σ − m2
π)/2fπ suggests mσ = 687 MeV, reasonably

near the predicted CL-LσM value [3, 53] mσ = 650 MeV.

π
0

0

0

PV

K

κ
Fig. 8. Parity-violating weak K0 tadpole graph for κ0 → π0 transition.
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8. Summary and conclusions

In Sec. 1 we reviewed the solution of the LσM at the quark-loop level. In Sec. 2
we used SU(2), SU(3) Goldberger–Treiman quark relations to normalize the π and
K form factors to unity at k2 = 0, after which we differentiated these form factors
to predict the LσM charge radii, both being compatible with data. Next, in Sec. 3,
we briefly reviewed e.m. charged-pion polarizabilities for γγ → ππ, and compared
them with LσM predictions. In Sec. 4 we used quark loops to match the observed
form factor f+(0). In Sec. 5 we showed that the LσM form factors Fπ

V , Rπ, FK
V +FK

A ,
and the ratio Fπ

A/Fπ
V are all in agreement with the measured values. Then in Sec. 6

we compared tree-level VMD with LσM VPP and PVV quark loops. Both theories
agree well with data. Finally, in Sec. 7 we successfully extended this LσM picture
to nonleptonic weak decays, in particular to the ∆I =1/2-dominated K2π decays,
and inferred σ(687) and κ(838) masses.

In view of the good agreement with experiment for practically all studied observ-
ables, and the absence of any freely adjustable parameters, we believe the quark-
level LσM is an excellent candidate for an effective theory of low-energy QCD
[54 – 60].
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MEZONSKI FAKTORI OBLIKA U LINEARNOM σ MODELU
NA KVARKOVSKOJ RAZINI

Primjenjujemo linearni σ model (LσM) na kvarkovskoj razini za računanje niza
elektromagnetskih i slabih veličina za lake mezone, kao što su pionski i kaonski fak-
tori oblika i nabojski polumjeri, polarizivost nabijenih piona, poluleptonski slab Kℓ3

raspad, poluleptonski slabi radijativni pionski i kaonski faktori oblika, radijativni
raspadi vektorskih mezona i neleptonski slabi raspadi K2π. Slaganje svih predvi-
d–anja s ishodima mjerenja je izvanredno. Usput, pokazujemo blisku vezu LσM sa
prevladavanjem vektorskih mezona. Izvodima neke zaključke o LσM u odnosu na
pristupe QCDu s rešetkama i renormalizacijskom grupom.
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