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Recent investigations of the Dyson–Schwinger equations and Monte–Carlo lattice
calculations resulted in a coherent description of the fully dressed gluon, ghost and
quark propagators in Landau gauge QCD. In the Dyson–Schwinger approach, the
infrared behaviour of these propagators is determined analytically. For finite space-
like momenta the gluon, ghost and quark propagators are compared to available
corresponding results of lattice Monte–Carlo calculations. For all three propagators,
an almost quantitative agreement is found. These results for the non-perturbative
propagators allow an analytical verification of the Kugo–Ojima confinement crite-
rion. Our numerical analysis clearly reveals positivity violation for the gluon prop-
agator generated by a cut in the complex momentum plane. The non-perturbative
strong running coupling resulting from these propagators possesses an infrared fixed
point. The quark propagator obtained from quenched and unquenched calculations
displays dynamical chiral symmetry breaking with quark masses close to “phenom-
enological” and lattice values. We confirm that linear extrapolations of the quark
propagator for different bare masses to the chiral limit are inaccurate.
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1. Some aspects of confinement

Data taken at the Jefferson Lab over the last few years have uncovered many
unexpected properties of hadrons. It seems that CEBAF operates in a very inter-
esting energy range, and it is foreseeable that after its upgrade many more highly
interesting results will be obtained. More or less, all of these investigations aim at
an understanding of the structure of hadrons in terms of the underlying degrees of
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freedom, the quarks and gluons. To bring our current theory of strong interactions,
quantum chromodynamics (QCD), into agreement with observations the hypoth-
esis of confinement is needed. Even thirty years after the formulation of QCD a
detailed understanding of the confinement mechanism(s) is still lacking.

Experimental data obtained at the Jefferson Lab pose a challenge to theoretical
physicists working in this field: In principle, the requirement is to understand
hadronic properties at intermediate and large momentum transfers in terms of
QCD degrees of freedom. An adequate theoretical approach for such investigations
has to be deeply rooted in quantum field theory to accommodate a description
of confinement, it has to be Poincaré-covariant to be applicable at the employed
momentum transfers, and, last but not least, it has to be manageable for quite
complicated hadronic form factors and reactions.

Non-perturbative calculations of QCD correlation functions do fulfill all these
requirements. Studies of their equations of motion, the Dyson–Schwinger equations
(DSEs), have the potential to provide a successful phenomenology of hadrons in
terms of quarks and gluons (for recent reviews see, e.g., Refs. [1 – 3]). Within this
approach, dynamical breaking of chiral symmetry is obtained from first principles
[4]. The description of meson properties and reactions based on their Bethe–Salpeter
amplitudes has been quite successful (see Ref. [1] and references therein), and it
seems viable that covariant Faddeev amplitudes will allow for a computation of
baryonic reactions as well (see, e.g., Ref. [5]). On the other hand, the results of Ref.
[5] make it clear that an understanding of confinement and its implications on the
analytic structures of QCD Green’s functions is a necessary prerequisite for further
progress in this direction.

The phenomenon of confinement is truly non-perturbative in nature: There is
a physical scale associated with it, and we know from asymptotic freedom of QCD
that such scales are non-analytic in the coupling. Futhermore, as we will see shortly,
QCD Green’s functions exhibit infrared singularities related to confinement. Lat-
tice calculations are very helpful because they provide a rigorous non-perturbative
method, nevertheless, there is definite need for continuum-based methods. In the
following, we discuss how the infrared behaviour of QCD propagators can be deter-
mined analytically, and what the corresponding results tell us about confinement
in the covariant gauge.

Let us take a step back and discuss quantum electrodynamics (QED) first. In
QED in the covariant gauge, the electromagnetic field can be decomposed into
transverse, longitudinal and time-like photons, but the latter two are never ob-
served. From a mathematical point of view, this can be understood from the rep-
resentations of the Poincaré group: Massless particles have only two possible po-
larizations. This apparent contradiction is resolved by the fact that time-like and
longitudinal photons cancel exactly in the S-matrix [6]. We can interpret this also
otherwise: The time-like photon, being unphysical due to the Minkowski metric
from the very beginning, “confines” the longitudinal photon.

In QCD, cancelations of unphysical degrees of freedom in the S-matrix also
occur but are more complicated due to the self-interaction of the gluons. One
obtains, e.g., amplitudes for the scattering of two transverse into one transverse
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and one longitudinal gluons to order α2

S . A consistent quantum formulation in a
functional integral approach leads to the introduction of ghost fields [7]. To order
α2

S , a ghost loop then cancels all gluon loops which describe scattering of transverse
to longitudinal gluons. The proof of this cancelation to all orders in perturbation
theory has been possible by employing the BRS symmetry of the covariantly gauge
fixed theory [8]. At this point, one has achieved a consistent quantization. If one
wants to describe confinement of coloured states in a similar efficacious way, one
has to go only one slight step further: One has to require that only BRS singlets
are allowed as physical states [9, 10].

The Kugo–Ojima confinement scenario [9, 10] describes a mechanism by which
the physical state space contains only colourless states. The coloured states are not
BRS singlets and, therefore, do not appear in S-matrix elements: They are confined.
Transverse gluons are BRS-non-singlets states with gluon-ghost, gluon-antighost
and gluon-ghost-antighost states in the same multiplet. Gluon confinement then
occurs as destructive interference between these states. In the Landau gauge, a
sufficient criterion for this type of confinement to occur is given by the infrared
behaviour of the ghost propagator: If it is more singular than a simple pole, the
Kugo–Ojima confinement criterion is fulfilled. It is important to note that the
general properties of the ghost DSE and one additional assumption, namely that
QCD Green’s functions can be expanded in asymptotic series in the infrared, allow
to prove this version of the Kugo–Ojima confinement criterion [11, 12].

2. Gluon propagator and running coupling

Recently, strong arguments have been provided in favour of infrared dominance
of the gauge fixing part of the QCD action in the covariant gauge [13]. The related
infrared dominance of ghost loops also occurs in truncation schemes of DSEs being
self-consistent at the level of two-point functions [14]. These schemes have been
refined and generalized [15] and then allowed to solve the coupled set of DSEs for
the ghost, gluon and quark propagators [4].

In the Landau gauge, these momentum-space propagators, DG(p), Dµν(p) and
S(p), renormalized at a scale µ, can be generically written as

DG(p, µ2) = −
G(p2, µ2)

p2
, (1)

Dµν(p, µ2) =

(

δµν −
pµpν

p2

)

Z(p2, µ2)

p2
, (2)

S(p, µ2) =
1

− ip/A(p2, µ2) + B(p2, µ2)
=

ZQ(p2, µ2)

− ip/ + M(p2)
. (3)

Two renormalisation-scale-independent combinations built from these functions will
be important for further discussion: M(p2) = B(p2, µ2)/A(p2, µ2) denotes the
quark mass function, and a non-perturbative definition of the running coupling,
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αS(p2) = αS(µ2)G2(p2, µ2)Z(p2, µ2), is possible due to the non-renormalisation of
the ghost-gluon vertex in the Landau gauge [14].

Employing asymptotic expansions for the propagators at small momenta, the
ghost and gluon equations can be solved analytically. One finds simple power laws,

Z(p2, µ2) ∼ (p2/µ2)2κ, G(p2, µ2) ∼ (p2/µ2)−κ, (4)

for the gluon and ghost dressing functions with exponents related to each other.
Hereby κ is an irrational number, κ = (93 −

√
2101)/98 ≈ 0.595 [12, 16]. The

product G2(p2, µ2) Z(p2, µ2) tends to a constant in the infrared. Correspondingly,
we find an infrared fixed point for the running coupling,

αS(0) =
4π

6Nc

Γ(3 − 2κ)Γ(3 + κ)Γ(1 + κ)

Γ2(2 − κ)Γ(2κ)
≈ 2.972

for the gauge group SU(3). This result depends slightly on the employed truncation
scheme. Infrared dominance of the gauge fixing part of the QCD action [13] implies
infrared dominance of ghosts which in turn can be used to show [12] that αS(0)
depends only weakly on the dressing of the ghost-gluon vertex and not at all on
other vertex functions.

The running coupling, as it results from numerical solutions for the gluon, ghost
and quark propagators, can be quite accurately fitted by the relatively simple func-
tion [4]

αfit(p
2) =

αS(0)

1 + p2/Λ2
QCD

+
4π

β0

p2/Λ2
QCD

1 + p2/Λ2
QCD

(

1

ln(p2/Λ2
QCD)

−
1

p2/Λ2
QCD − 1

)

(5)

with β0 = (11Nc−2Nf )/3. Note that, following Ref. [17], the Landau pole has been
subtracted. The scale ΛQCD is hereby determined by fixing the running coupling at
a certain scale, e.g. αS(M2

Z) = 0.118.

3. Quark propagator

In the quark DSE, as well as in the quark loop of the gluon equation, the quark-
gluon vertex enters. It has been proven successful [4] to assume that the quark-gluon
vertex factorizes,

Γν(q, k) = V abel
ν (p, q, k)W¬abel(p, q, k), (6)

with p and q denoting the quark momenta and k the gluon momentum. The non-
Abelian factor W¬abel multiplies an Abelian part V abel

ν , which carries the tensor
structure of the vertex. For the latter we choose a construction [18] used widely in
QED.

The Slavnov–Taylor identity for the quark-gluon vertex implies that the non-
abelian part W¬abel(p, q, k) has to contain factors of the ghost renormalization
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function G(k2). Due to the infrared singularity of the latter, the effective low-energy
quark-quark interaction is enhanced as compared to the interaction generated by
the exchange of an infrared suppressed gluon. Therefore, the effective kernel of the
quark DSE contains an integrable infrared singularity. Further constraints imposed
on W¬abel(p, q, k) are such that the quark mass function is, as required from general
principles, independent of the renormalization point, and the one-loop anomalous
dimensions of all propagators are reproduced.

In Fig. 1, we compare our results for the quark propagator in quenched approx-
imation, as well as for three massless flavours, with the lattice data [19]. These
results nicely agree with the one from the lattice. Furthermore, for the considered
number of flavours, the quenched approximation works well.

0 1 2 3 4 5 6 7 8

p
2
 [GeV

2
]

0

0,2

0,4

0,6

0,8

1

Z
Q

(p
2
), N

f
=3

Z
Q

(p
2
), quenched

lattice (Asqtad)
lattice (overlap)

M(p
2
), N

f
=3

M(p
2
), quenched
m

R
≈4.5 MeV

m
R
≈95 MeV

Fig. 1. The quark propagator functions in quenched approximation as well as for
three massless flavours compared to the lattice data [19].

4. Spectral properties of the gluon propagator

The infrared exponent κ is an irrational number, and thus the gluon propagator
possesses a cut on the negative real p2 axis. It is possible to fit the solution for the
gluon propagator quite accurately without introducing further singularities in the
complex p2 plane. The fit to the gluon renormalization function [21]

Zfit(p
2) = w

(

p2

Λ2
QCD + p2

)2κ
(

αfit(p
2)

)

−γ
(7)

is shown in Fig. 2. Here, w is a normalization parameter and γ = (−13Nc +
4Nf )/(22Nc −4Nf ) is the one-loop value for the anomalous dimension of the gluon
propagator. The corresponding discontinuity along the cut vanishes for p2 → 0−,
diverges to +∞ at p2 = −Λ2

QCD and goes to zero for p2 → ∞.

The absolute value of the Fourier transform of the (transverse) gluon propagator
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Fig. 2. The gluon propagator (left diagram) and its Fourier-transform (right dia-
gram) compared to the fit, Eq.(7), and lattice data [20].
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Fig. 3. The Fourier transform of the scalar part of the quark propagator for three
different types of vertices. Positivity violations disappear once the scalar coupling,
∆B, is included in the vertex [21].

with respect to the Euclidean time is shown in Fig. 3. First, we clearly observe posi-
tivity violations in the gluon propagator. Second, the agreement of the numerical
Schwinger function with the Fourier transformed fit is excellent. The crucial pro-
perty of the gluon propagator is that it tends to zero for vanishing momentum. This
can be seen from the relation 0 = D(p = 0) =

∫

d4x D(x) (with D(p) = Z(p2)/p2),
which implies that a nontrivial propagator function, D(x), in coordinate space must
contain positive as well as negative norm contributions.

The function (7) contains only four parameters: the overall magnitude which,
due to renormalization properties, is arbitrary (it is determined via the choice of the
renormalization scale), the scale ΛQCD, the infrared exponent κ and the anomalous
dimension of the gluon γ. The latter two are not free parameters: κ is determined
from the infrared properties of the DSEs, and for γ, its one-loop value is used. Thus
we have found a parameterization of the gluon propagator which has effectively only
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one parameter, the scale ΛQCD.

5. Spectral properties of the quark propagator

When discussing the results for the quark propagator, we already stated that a
dressed quark-gluon vertex is mandatory. For the present discussion, it is important
to note that such or similar solutions of the Slavnov–Taylor identity for the quark-
gluon vertex will always result in the appearance of a quark-gluon coupling term
∆B proportional to the sum of quark momenta,

V abel
ν (p, q) := ΣAν + ∆Bν + ...

=
A(p2) + A(q2)

2
γν + i

B(p2, µ2) − B(q2, µ2)

p2 − q2
(p + q)ν + ... . (8)

Such a coupling, being effectively scalar, is per se not invariant under chiral trans-
formations, contrary to the leading term, ΣA, of the quark-gluon vertex. It is
important to realize that the term ∆B appears only in case chiral symmetry is
already dynamically broken. Thus it is consistent with the chiral Ward identities.
Its existence, on the other hand, provides a significant amount of self-consistent
enhancement of dynamical chiral symmetry breaking. Fairly independent of the
form of the gluon propagator, the resulting quark propagator respects positivity if
the term ∆B is included in the quark-gluon vertex [21].

A peculiar feature of the Fourier transform of the scalar part of the quark
propagator is the curvature appearing for small Euclidean times. There are at least
three possible sources for this. A leading singularity on the real momentum axis
may be accompanied by additional real singularities at larger masses, or by complex
conjugate singularities with a larger real part of the mass, or it may be the starting
point of a branch cut on the negative real momentum axis [21].

6. Extrapolation to the chiral limit

Lattice simulations of dynamical chiral symmetry breaking are facing problems
from two sides. Finite volume effects tend to obfuscate results in the far infrared
region. Furthermore, although in principle the Ginsparg-Wilson relation enables
one to implement chiral quarks on a lattice, small quark masses are computation-
ally very expensive. Therefore, lattice simulations are usually carried out at finite
bare quark masses and then linearly extrapolated to the chiral limit. The DSE-
approach, however, suggests that this linear extrapolation is inaccurate [22]. The
DSE for the quark propagator also contains the nontrivial relation between the
dynamically generated quark mass at small momenta and the renormalized quark
mass at a perturbative renormalization point. To illustrate this point, we display
the dynamical mass M(p2,mµ) from the DSEs for two different momenta, p2 = 0

and p2 = 0.38GeV2 in Fig. 4. One clearly observes the curvature in the DSE-results
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for both momenta, reflecting the nonlinear behaviour of the underlying equations.
We compare these results with the lattice data taken from Ref. [19] and mµ from
Ref. [22]. The lattice data are consistent with a linear fit. However, by multiplying
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Fig. 4. Relation between the dynamically generated quark mass at p2 = 0.38 GeV2

and p2 = 0 to the renormalized quark mass mµ at µ = 19 GeV from the DSEs and
from the lattice data of Ref. [19].

our DSE-results with an overall factor, we obtain a curved mass function that
mimics a DSE-model fit to the lattice data. The extrapolated chiral dynamical
quark mass at p2 = 0.38 GeV2 is roughly 20% below the one obtained from the
linear fit. Employing only the leading γµ-structure of the quark-gluon vertex, as
done in Ref. [22], leads to even more drastic deviations. Thus we confirmed that
the linear extrapolation of lattice data to the chiral limit cannot be trusted.

7. Epilogue

Recent years have seen a lot of progress in Strong QCD. In the Landau gauge,
we gained an understanding of the infrared behaviour of gluon and quark propaga-
tors. We have verified the Kugo–Ojima scenario for gluon confinement and found
dynamical chiral symmetry breaking in an ab initio calculation.

We have proposed relatively simple functions to describe the running coupling,
the gluon and the quark propagators (see Ref. [21] for details) for all possible values
of momenta. These have the potential to provide a basis for a hadron phenomeno-
logy based on quarks and gluons, even and especially in the non-perturbative
regime.
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KUGO–OJIMAOV KRITERIJ OGRANIČENJA I INFRACRVENA SVOJSTVA
LANDAUOVE BAŽDARNE QCD

Nedavna istraživanja Dyson–Schwingerovih jednadžbi i Monte–Carlo računa na
rešetki dali su usklad–en opis potpuno obućenih propagatora gluona, duhova i
kvarkova u Landauovoj baždarnoj QCD. U Dyson–Schwingerovom pristupu, in-
fracrvena svojstva tih propagatora odred–ena su analitički. Za konačne vremenske
impulse, propagatori gluona, duhova i kvarkova uspored–uju se dostupnim odgo-
varajućim ishodima Monte–Carlo računa na rešetki. Gotovo kvantitativno slaganje
nalazi se za sva tri propagatora. Ti ishodi za neperturbativne propagatore dopuštaju
analitičku provjeru Kugo–Ojimaovog kriterija ograničenja. Naša numerička anali-
za jasno pokazuje kršenje pozitivnosti za gluonski propagator uzrokovan rezom
u ravnini kompleksnog impulsa. Neperturbativno jako vezanje, koje je posljedica
tih propagatora, ima infracrvenu čvrstu točku. Kvarkovski propagator koji se do-
bije gašenim i negašenim računima pokazuje lomljenje dinamičke kiralne simetrije s
kvarkovskim masama koje su blizu “fenomenološkim” i rešetkinskim vrijednostima.
Utvrdili smo da su linearne ekstrapolacije kvarkovskih propagatora za razne gole
mase vrlo netočne u kiralnoj granici.
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