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The possibility of large charge and isospin fluctuations of the disoriented chiral
condensate type (DCC-type) in high-energy heavy-ion collisions is studied within
the framework of an unitary eikonal model. The factorization property of the scat-
tering amplitude in the impact-parameter space of the leading two-nucleon system
is used to study semiclassical production of pions in the central region. A classical
source function of a pion field in the impact-parameter space was related to the
semiclassical solutions of the equation of motion of the nonlinear σ-model coupled
to quark degrees of freedom. A multi-pion exchange potential between two quarks
is derived. It is shown that in the limit of soft chiral pion bremsstrahlung, the
anomalously large fluctuations in the ratio of neutral to charged pions are obtained
without involving DCC formation. We also show that the DCC-type fluctuations
should be suppressed if a large number of pions was produced via ρ-type clusters.
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1. Introduction

Central ultrarelativistic collisions at RHIC and LHC with more then 3000 pro-
duced particles present remarkable opportunity to analyse event-by-event fluctua-
tions of hadronic observables. Such single-event analysis with large statistics can
reveal new physical phenomena usually hidden when averages over a large statistical
sample of events are made [1, 2]. The number of particles produced in relativistic
heavy-ion collisions can differ dramatically from collision to collision due to the
variation of impact parameter (centrality dependence), energy deposition (lead-
ing particle effect) and other dynamical effects [2, 3]. The fluctuations can also be
influenced by novel phenomena such as the disoriented chiral condensate (DCC)
formation [4, 5].
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The best probes of such novel dynamics are fluctuations of conserved quanti-
ties, because conservation laws limit the degree to which final-state scattering can
dissipate. Even globally conserved quantities, such as energy, net charge, isospin,
baryon number and strangeness can fluctuate when measured, e.g., in a limited
phase-space region.

Several methods have been proposed [3, 6] to distinguish between statistical
and dynamic fluctuations. In high-energy hadronic and heavy-ion collisions, the
correlations of particle production are usually analyzed and described in terms of
“short-range correlations” (SRC) and “long-range correlations” (LRC). The SRC
are mainly due to clustering of outgoing particles. These clusters may be hadronic
resonances which decay into a few particles or minijets [5, 7, 8]. The LRC dominate
in high multiplicity events and are mainly due to global conservation laws.

The old puzzle in cosmic-ray observations is the existence of few exotic events
characterized by an anomalously large number of charged pions in comparison with
the number of neutral pions, the Centauros [9], indicating that there should exist a
strong negative long-range correlation between two types of the pions. Such long-
range correlations are possible if pions are produced semiclassicaly and constrained
by global conservation of isospin [10 – 15].

Although the actual dynamical mechanism of the production of a classical pion
field in the course of a high-energy collision is not known, there exist numerous
interesting recent theoretical attempts to explain Centauros either as different types
of isospin fluctuations due to the formation of a DCC [16 – 20], or as multiparticle
Bose-Einstein correlations (BEC) [21], or as the formation of a strange quark matter
(SQM) [22]. Among the most interesting speculations is the idea of DCC that
localized regions of misaligned chiral vacuum might occur during the ultrahigh-
energy hadronic and heavy-ion collisions when the chiral symmetry is restored
at high temperatures. These regions, if produced, would behave as a pion laser,
relaxing to the ground state by coherent pion emission. It is generally accepted
that the fluctuation of the ratio of neutral to charged pions of the Centauro type
could be a sign of the DCC formation provided that a single large domain is formed,
containing a large number of low pT pions. Since the pions formed in the DCC are
essentially classical, they form a quantum superposition of coherent states with
different orientation in isospin space. If all pions in the domain are pointing in
the same isospin direction and the condensate state is a pure isoscalar, then the
formation of DCC leads to large event-by-event fluctuations in the ratio f = n0/n
of the number of π0’s in the DCC divided by the total number of pions produced in
an event. The probability distribution of f inside the DCC domain is [13, 16, 17, 19]

PDCC(f) =
1

2
√

f
. (1)

There is a variety of proposed mechanisms other than DCC which also lead to the
distribution (1) [23 – 26]. The distribution PDCC(f) is different from the generic
binomial-distribution expected in normal events which assumes equal probability
for production of π+, π− and π0 pions. The emission of charged and neutral pions
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is then uncorrelated and the distribution

PB(n0, n) =

(

n

n0

) (

1

3

)n0
(

2

3

)n−n0

(2)

in the limit n → ∞, n0 → ∞ with f fixed, approaches a delta function at f = 1/3.

The possibility of observing the DCC-type fluctuations critically depends on
the size and the energy content of the DCC domain. If the domain is of the pion
size, the effect of DCC is too small to be observed experimentally. The early accel-
erator searches for Centauros and DCC at CERN [27 – 30] and at Fermilab [23, 31]
were thus unsuccessful. With the RHIC facility at BNL now, there is a possibility
to consider event-by-event fluctuations of other specific hadronic observables that
might be more informative about the signal of DCC. There are various factors that
may affect the observation of the DCC signal [32]. Experimental signals such as
the isospin fluctuations, the strong relative enhancement of the number of low pT

pions, and the suppression of HBT correlations may provide a robust signal of DCC
[33].

The space-time scenario of the formation and decay of DCC is usually studied
within one of the simplified versions of the chiral effective Lagrangians, either the
linear or nonlinear sigma model [20]. However, it should be emphasized that the
use of σ-models, be they linear or nonlinear, is only a rough approximation to the
true dynamics, because the couplings of pion and sigma fields to the constituent
quarks may be large and their effect should not be ignored.

In this paper, we present results of an event-by-event analysis of charge-neutral
pion fluctuations as a function of the ρ/π ratio in pp-collisions. Following the ap-
proach of our earlier papers [24, 34], we consider in Sect. 2 the leading-particle effect
as a possible source of a classical pion field in the impact-parameter space. It will
be related to the semiclassical solutions of the equation of motion of the nonlinear
σ-model coupled to quark degrees of freedom. In order to faciliate the analysis of
charged-neutral pion correlations, we also derive the corresponding pion-generating
function. The quantum version of the nonlinear σ-model coupled to quarks is dis-
cussed in Sect. 3, and shown to lead to a coherent state description of the pions
emerging from the DCC. A multipion exchange potential between two quarks is de-
rived in the configuration space and its light-cone singularity structure discussed.
Results of our investigation are summarized in the Sect. 4. Our general conclusion
is that within the nonlinear σ-model the large isospin fluctuations depend strongly
on the value of the ρ/π ratio which fluctuate from event to event.

2. Pion production from a classical source

At high energies most of the pions are produced in the nearly baryon-free central
region. The energy available for the hadron production is

Ehad =
1

2

√
s − Eleading , (3)
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which at fixed total c.m. energy
√

s varies from event to event. The n-pion con-
tribution to the s-channel unitarity can be written as an integral over the relative
impact parameter b of the two incident leading particles

Fn(s) =
1

4s

∫

d2b

n
∏

i=1

dqi | Tn(s, b; 1 . . . n) |2, (4)

where dq = d2qT dy/2(2π)3. The normalization is such that

Fn(s) = sσn(s)

and σinel(s) =
∞
∑

n=1

σn(s). (5)

If the isospin of the incoming leading particles is II3, then the initial-state vector
of the pion field is Ŝ(s, b) | II3〉, where | II3〉 denotes a vacuum state with no pions.
The n-pion production amplitude is

iTn(s, b; q1 . . . qn) = 2s〈I ′I ′3; q1 . . . qn | Ŝ(s, b) | II3〉, (6)

where I ′I ′3 denotes isostate of the outgoing leading particles.

The basic assumption of the independent emission of pion-clusters, in b-space
is the factorization property of the scattering amplitude. The factorization of Tn

follows if the quantum field of the pion-cluster satisfies the equation of motion of
the form

(2 + m2
c)πc(s, b;x) = jc(s, b;x), (7)

for an isovector cluster and similar one for an isoscalar cluster. Here, jc is a classical
source of the cluster which decays into c = 1,2,... pions outside the region of strong
interactions (the final-state interaction between pions being neglected). Clusters
decaying into two or more pions simulate a short-range correlation between pions.
They need not be well-defined resonances.

If the conservation of isospin is a global property of the colliding system, then
jc(s, b;x) is of the form

jc(s, b;x) = jc(s, b;x)n, (8)

where n is a fixed unit vector in isospace independent of x, s and b . The global con-
servation of isospin thus introduces the long-range correlation between the emitted
pions.

The S matrix following from such a classical source is still an operator in the
space of pions. Inclusion of isospin requires Ŝ(s, b) to be also a matrix in the isospace
of the leading particles.

The coherent production of pion-clusters is described by the S matrix

Ŝ(s, b) =

∫

d2n | n〉D̂(s, b)〈n | , (9)
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where | n 〉 represents the isospin-state vector of the two-leading-particle system.

The quantity D̂(s, b) is the unitary coherent-state displacement operator defined
in our case as

D(s, b) = exp[a†(s, b) − a(s, b)] , (10)

where

a†(s, b) =
∑

c

∫

dq[Jc(s, b; q)nac

†(q) + J ′
c(s, b; q)a†

c(q)], (11)

and ac

†(q) and a†
c(q) are the creation operators of a cluster of type c, respectively.

The isospin (I ′, I ′3) of the outgoing leading particle system varies from event to
event. It is produced with the probability ωI′,I′

3
, and we can sum over all (I ′I ′3)

to obtain the probability distribution of producing n+π+, n π , and n0π
0 from a

given isospin state

PII3
(n+n n0)NII3

=
∑

I′I′

3

ωI′,I′

3

∫

d2bdq1dq2 . . . dqn | 〈I ′I ′3n+n n0 | Ŝ(s, b) | II3〉 |2,

(12)
where n = n+ + n + n0 and NII3

is the corresponding normalization factor deter-
mined by

∑

{n} PII3
(n+, n−, n0) = 1.

This is our basic relation for calculating various pion-multiplicity distributions,
pion multiplicities, and pion correlations between definite charge combinations. In
general, the probability PII3

(n+n n0) would depend on (I ′I ′3) dynamically. The
final-leading-particles tend to favour the (I ′, I ′3) ≈ (I, I3) case. However, if the
leading particles are colliding nuclei, an almost equal probability for various (I ′, I ′3)
seems reasonable approximation owing to the large number of possible leading
isobars in the final state. Then we can sum over all (I ′I ′3) using the group theory
alone.

Recent studies of heavy-ion collisions at the partonic level [26] argue that the
central region is mainly dominated by gluon jets. The valence quarks of the incom-
ing particles which escape from the interaction region form the outgoing leading
particle system. Since gluon’s isospin is zero, it is very likely that total isospin of
the produced pions in the central region is also zero. This picture is certainly true
if the central region is free from valence quarks, the situation expected to appear
at the extremely high collision energies.

Let us now assume that pions are produced both singly and through isovector
clusters of the ρ type [24]. In this case, the most appropriate tool for studying
various pion correlations is the generating function GII3

(z, n )

GII3
(z, n ) =

∑

n0,n+

PII3
(n+, n , n0)z

n0 , (13)
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from which we can calculate, for example

〈n0〉n =
d

dz
lnGII3

(z, n ) |z=1 (14)

=
∑

n0,n+

n0PII3
(n+, n , n0),

f0
2,n =

d2

dz2
lnGII3

(z, n ) |z=1 (15)

= 〈n0(n0 − 1)〉n − 〈n0〉2n , (16)

and

PII3
(n0) =

1

n0!

dn0

dzn0

∑

n

GII3
(z, n ) |z=0

=
∑

n−,n+

PII3
(n+, n , n0) . (17)

The form of this generating function is

GII3
(z, n ) = (I +

1

2
)
(I − I3)!

(I + I3)!

1
∫

−1

dx | P I3

I (x) |2 A(z, x)n0

n0!
e−B(z, x), (18)

where

2A(z, x) = (1 − x2)nπ + z(1 − x2)nρ + 2x2nρ (19)

and

2B(z, x) = nπ(1 + x2 − 2zx2) + nρ(2 − z(1 − x2)). (20)

Here nπ denotes the average number of directly produced pions, and nρ denotes
the average number of ρ-type clusters which decay into two short-range correlated
pions. The function P I3

I (x) denotes the associate Legendre polinomial. Note that
A(1, x) = B(1, x).

The total number of emitted pions is

n = nπ + 2nρ. (21)

The behaviour of P (n0) ≡ P00(n0) for n = 50 and different combinations of
(nπ, nρ) is shown in Fig. 1.

The behaviour of the n0-dispersion

D(n0)
2
n = f0

2,n + 〈n0〉n (22)
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for a given number of negative pions and different pairs of (nπ, nρ) in the case of
I = I3 = 1 is shown in Fig. 2. Note that f0

2,n is a sensitive quantity of the pairing
properties of the pions.

Fig. 1. The curves represent P (n0) for different combinations of (nπ, nρ), the aver-
age number of singly produced pions and the average number of ρ-type clusters of
pions, respectively.

Fig. 2. Dispersion of two neutral pions for a given number of negative pions in pp-
collisions ( I = I3 = 1). The curves represent different combinations of (nπ, nρ).
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We see that DCC-type behaviour is expected only for nπ /=0 and nρ = 0, that is
in events without ρ-resonances. Recent estimate of the ratio of ρ– mesons to pions,
at accelerator energies, is nρ = 0.10nπ [6].

3. Isospin fluctuation in a quantum nonlinear sigma

model

In this section, we establish the relationship between the quantum nonlinear
sigma model coupled to quarks and our coherent state eikonal model description of
the pion production.

As is well known, the Lagrangian for QCD with two light up and down quarks
has an approximate global SU(2)L×SU(2)R symmetry, which at low temperatures,
is spontaneously broken to SU(2)V by a nonzero value of the quark condensate
〈q̄LqR〉, which is regarded as an order parameter of the system. This order parameter
can be represented as a four-component vector φ ≡ (σ,π) built from the quark
densities. The chiral symmetry then corresponds to O(4) rotations in internal space.

The true vacuum of the theory is defined as 〈φ〉 = (〈σ〉,0), with 〈σ〉 /= 0. In
QCD, the spontaneous symmetry breakdown leads to nearly massless Goldstone
bosons (the pions) and gives the constituent-quark mass. At low energies and large
distances (momentum scale smaller than 1 GeV), the dynamics of QCD is described
by an effective Lagrangian containing the σ,π fields and constituent quarks.

In the DCC dynamics, we distinguish three stages: formation, evolution and
decay stage. In the conventional approach [19], one starts with a chirally symmetric
phase at T > Tc and DCC formation happens as T , due to a rapid expansion or
cooling, drops below Tc spontaneously breaking the chiral symmetry.

The evolutionary stage of the DCC is usually described by the classical chiral
dynamics based on the σ-model, mostly the linear σ-model. We consider the non-
linear σ-model coupled to quarks at zero temperature [35, 36] which is expected to
describe the late stage of the DCC evolution.

The Lagrangian for the nonlinear σ-model coupled to quarks is

L =
f2

π

4
Tr(∂µU†∂µU) + q(i γ∂)q − gfπqUq , (23)

where

U = exp(i γ5
π · τ
fπ

) . (24)

We shall parametrize the pion field in the following form

π(x) = fπn(x) θ(x) , (25)

where n(x) is a unit vector which determines the local isospin orientation of the
pion field, obeying n(x)2 = 1.
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The Euler-Lagrange equations of motion for θ and n are

2 θ − sin θ cos θ∂µn · ∂µn = −i
mQ

f2
π

n · (Q̄τγ5Q) , (26)

∂µ(sin2θn × ∂µn) = −i
mQ

f2
π

n × (Q̄τγ5Q) sin θ , (27)

where Q(x) denotes the constituent quark field defined by

Q(x) = exp

(

i γ5
π · τ
2fπ

)

q(x), (28)

and mQ = gfπ is the constituent quark mass.

We treat

−i
mQ

fπ
Q̄(x)τγ5Q(x) = j(x) (29)

as a given classical external source of pions and identify it with the source function
j(c=1)(s, b;x) in our eikonal model (7). For the class of solutions that can be rotated

into a uniform one, n(x) = n, known as the Anselm-class of solutions [16], the
solutions with constant n can be realized if the source points to a certain fixed
direction n in the isospace

j(x) = j(x)n . (30)

Then the equation of motion for the pion field reduces to

2 θ(x) = j(x) (31)

with

π(x) = fπθ(x)n . (32)

This relationship offers the possibility to study the importance of various quark
sources in the DCC formation.

In quantum chiral field theory of the nonlinear σ-model, the role of a strong
coupling of qπ-interaction has the ratio mQ/fπ. Since the Lagrangian of the nonlin-
ear σ-model is nonpolynomial, a suitable renormalization procedure and operator
normal ordering should be formulated [37, 38]. Let

Φ =: exp

(

iγ5
πτ

fπ

)

− 1 : (33)

denote the chiral super field of the pion. The Lagrangian describing the interaction
of this super chiral field with quarks is now

L =
f2

π

4
Tr(∂µΦ∂µΦ) + q̄(i γ∂ − mQ)q − mQ

fπ
q̄Φq. (34)
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If the Φ field is expanded in terms of pion fields

Φ =
i

fπ
γ5π · τ − 1

2f2
π

π · π + ... , (35)

the first term will generate one-pion exchange interaction between quarks. The main
contribution of the second term will come from the two-pion exchange which can be
simulated by a sigma-meson exchange. The nonrelativistic reduction of the above
Lagrangian gives an interaction between quarks which is mediated by the exchange
of an arbitrary number of pions grouped in different Goldstone-type bosons.

However, for studying multipion production on quarks, it is necessary to find
the chiral superpropagator of the Φ(x) field

△Φ(x) = 〈T (Φ(x)Φ(0))〉

= 〈T (: exp

(

i γ5
π(x)τ

fπ

)

:: exp

(

i γ5
π(0)τ

fπ

)

:〉 − 1 . (36)

Its explicit form in x-space, after a number of algebraic manipulations, is

△Φ(x) = 1 ⊗ 1F (x) +
1

3
(γ5τ ) ⊗ (γ5τ )G(x) , (37)

where

F (x) = ch

(△(x)

f2
π

)

+
△(x)

f2
π

sh

(△(x)

f2
π

)

− 1 (38)

and G(x) = 2 sh

(△(x)

f2
π

)

+
△(x)

f2
π

ch

(△(x)

f2
π

)

,

where the massless pion propagator

△(x) =
1

4π2

1

x2 − iǫ

is singular on the light-cone. Due to the singular character of the △(x), the su-
perpropagator △Φ(x), without further restrictions, contains an infinite number of
arbitrary parameters which can be expressed as a δ-ambiguity

δ(△Φ(x)) =
∑

n

an2
nδ(4)(x) , (39)

with an real and
∑

anzn an entire function of order ≤ 1/2. A definite choice of these
parameters can be made [37], so that △Φ(x) has no real singularities of the type
2

nδ(4)(x). The trick is to work in the Euclidean space-time, where no iǫ appears
in the propagator △(x).
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This superpropagator can be used to study a contribution to the quark-quark
scattering amplitude due to the exchange of a single chiral superfield. The multipion
exchange potential between two quarks is related to the Fourier transform of △Φ(x)
in the following way

ū(p′1)ū(p′2)△̃Φ(q)u(p1)u(p2) = ω′
1ω

′
2ṼΦ(q)ω1ω2 , (40)

where q = p′1 − p1 = p′2 − p2 and

u(p) =

√

ǫp + m

ǫp

(

ω

ω′

)

, ω′ =
σp

ǫp + m
ω

with ω∗ω = 1. For space-like momentum-transfer variable (q, q2 ≤ 0), the behaviour
of the Fourier transform of ch(△(x)/f2

π), for example, is ch(| q/fπ |2/3) for q → ∞.

According to the usual definition of the potential, as a nonrelativistic limit of
the Fourier-transformed exchange diagram in the field theory

VΦ(r) = (2π)−3

∫

d3q eiqrṼΦ(0, q) , (41)

we distinguish two contributions: one coming from the F (x)-part of the super-
propagator, △Φ(x), and the other one coming from the G(x)-part, respectively.
F generates central and spin-orbit forces between two quarks while G generates
spin-spin and tensor forces.

Over the past years, the one and two boson-exchange potentials (BEP) in NN-
dynamics and their extension to Goldstone-boson-exchange (GBE) dynamics have
already been successfully implemented in a chiral quark model for baryons [39].
Our approach, using the chiral superfield, seems to be a step forward in the phe-
nomenological description of the quark-quark interaction.

In the limit of soft chiral pion bremsstralung, which was studied long time ago
[40 – 43], every incoming and outgoing quark line was replaced by

q(x) −→ Q(x) = exp(i γ5
πτ

2fπ
)q(x). (42)

In this case, the distribution of neutral pions from a single quark line follows the
form P (n0 | n) ∼

√

1/nn0 [41], which is a typical behaviour for coherent pion
production without invoking the notion of DCC formation.

4. Conclusion

The results of the present analysis have shown that the experimental observation
of DCC is strongly affected by the ρ/π production ratio and the soft chiral-pion
bremsstralung. In particular, we have found that:
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• Within the framework of a unitary eikonal model with factorization, energy
conservation and global conservation of isospin the DCC-type fluctuation of
the neutral pion fraction (f) could be obtained if the ρ/π ratio is small in an
event, at least in a restricted phase-space domain;

• The DCC effect, if observed would also depend on isospin of the initial-
leading-particle system;

• The coherent production of ρ-type clusters of pions suppresses the DCC-type
fluctuations;

• The factorization property of the scattering amplitude in the impact-
parameter space of the initial-leading-particle system can be related to
the isospin-uniform solutions of the quantum nonlinear σ-model coupled to
quarks; relations (7) and (8), and (29) – (31);

• The multipion exchange potential between two quarks in the configuration
space can be derived. If its light-cone singularities are properly treated, it
can be used to study multipion production processes in terms of the ratio
mQ/fπ;

• The soft chiral pion bremsstralung also leads to anomalously large ratio of
neutral to charged pions. Therefore, the large n behaviour of P (n0 | n) ∼
√

1/nn0 is not a definite signature of DCC formation.
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DEZORIJETIRANI KIRALNI KONDENZAT I FLUKTUACIJE NABIJENIH I
NEUTRALNIH ČESTICA U SUDARIMA TEŠKIH IONA

Proučavali smo mogućnost velikih fluktuacija naboja i izospina tipa DCC (DCC
= dezorijentirani kiralni kondenzat) u visokoenergijskim sudarima teških iona u
okviru unitarnog eikonalnog modela. Primijenili smo svojstvo faktorizacije ampli-
tude raspršenja u prostoru parametra sudara vodećih čestica za proučavanje poluk-
lasične tvorbe piona u centralnom području. Funkcija klasičnog izvora pionskog
polja u prostoru parametra sudara može se povezati s poluklasičnim rješenjima
jednadžbe gibanja u nelinearnom sigma-modelu vezanom na kvarkovske stupnjeve
slobode. U radu se izvodi izraz za potencijal vǐsepionske izmjene izmed–u dva kvarka.
Pokazuje se da se u limesu kočnog zračenja mekanih kiralnih piona takod–er po-
javljuju anomalno velike fluktuacije omjera neutralnih i nabijenih piona neovisno o
pojavi DCC-a. Takod–er se pokazuje da bi fluktuacije tipa DCC trebale biti potis-
nute u slučaju kada se pioni proizvode uglavnom putem raspada ρ-mezona.
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