CLUSTER CALCULATION FOR $^{9}_{\Lambda} \rm Be$ HYPERNUCLEUS IN FADDEEV APPROACH

VLADIMIR SUSLOV $^{a,b},$ IGOR FILIKHIN a,b and BRANISLAV VLAHOVIĆ b,1

^aDepartment of Mathematical and Computational Physics, Sankt-Petersburg State University, 198504, Petrodvorets, Russia

^bDepartment of Physics, North Carolina Central University, Durham, NC 27707, USA

Received 15 October 2003; Accepted 10 October 2004 Online 14 November 2004

Configuration-space Faddeev calculations are performed for cluster model $\alpha\alpha\Lambda$ of the ${}^{9}_{\Lambda}$ Be hypernucleus using various $\alpha\Lambda$ potentials. For the $\alpha\alpha$ interaction, the nuclear component is only taken into account (phenomenological Ali-Bodmer potential). The binding energy of the ${}^{9}_{\Lambda}$ Be hypernuclei is calculated for two different potential models. In the first model, the s-wave $\alpha\Lambda$ potential acting in all partial waves in the $\alpha\Lambda$ subsystem is used. In the second model, a recent more realistic $\alpha\Lambda$ potential having the s- and p-partial components is employed. The core effect of nuclear $\alpha\alpha$ potential is also studied.

PACS numbers: 21.80.+a, 11.80.Jy, 21.45.+v UDC 539.128.3 Keywords: Λ hypernuclei, cluster model, $\Lambda \alpha$ interaction, Faddeev equations, few-body systems

1. Introduction

Configuration-space Faddeev calculations are performed to study the ${}^{9}_{\Lambda}\text{Be}$ hypernucleus considered as two α clusters and a Λ hyperon. We estimated higher partial-wave contribution to the binding energy of the ${}^{9}_{\Lambda}\text{Be}$ ground state $(\frac{1}{2}^{+})$ and particularly contribution coming from higher partial waves of the $\alpha\Lambda$ interaction. The Coulomb force between the α 's is not taken into account. The phenomenological Ali-Bodmer potential [1] is used for the description of the $\alpha\alpha$ interaction. For the $\alpha\Lambda$ potential, both form and parameters are uncertain, because $\alpha\Lambda$ interaction data are limited by the experimental value of binding energy of the ${}^{5}_{\Lambda}\text{He}$ hypernucleus, which is considered as the bound s-wave state of the $\alpha\Lambda$ system. To calculate the binding energy of the $\alpha\alpha\Lambda$ system, an s-wave potential model was

FIZIKA B 13 (2004) 2, 477–482

 $^{^1\}mathrm{Corresponding}$ author, e-mail address: branko@jlab.org

used in Ref. [2]. In this model, one and the same s-wave potential acts in all partial waves of decomposition of the $\alpha\Lambda$ interaction. It leads to unrealistic large *p*-wave contribution to the binding energy. In a recent work [3], a new $\alpha\Lambda$ potential having the s- and p-wave components was proposed. This potential was constructed on the basis of the NSC97 model of Λ N interaction [4]. In the present work, we use both $\alpha\Lambda$ potential models and compare p-wave contributions to the binding energy. We also study the core effect of nuclear $\alpha\alpha$ potential.

2. Theory

The bound state of the $\alpha\alpha\Lambda$ system is calculated by solving the differential Faddeev equations [5], which have the following general form:

$$\{H_0 + V_\alpha(|\overline{x}_\alpha|) - E\}\Psi_\alpha(\overline{x}_\alpha, \overline{y}_\alpha) = -V_\alpha(|\overline{x}_\alpha|)\sum_{\beta\neq\alpha}\Psi_\beta(\overline{x}_\beta, \overline{y}_\beta),$$

where V_{α} is the short-range pair interaction in the channel α , $H_0 = -\Delta_{\overline{x}_{\alpha}} - \Delta_{\overline{y}_{\alpha}}$ is the kinetic energy operator, E is the total energy and the wave function of the three-body system Ψ is given as a sum over the three Faddeev components, $\Psi = \sum_{\alpha=1}^{3} \Psi_{\alpha}$.

When two particles of the three-body system are identical as α particles in ${}^{9}_{\Lambda}$ Be ($\alpha\alpha\Lambda$), the coupled set of Faddeev equations reduces to two equations:

$$(H_0 + V_{\alpha\alpha} - E)U = -V_{\alpha\alpha}(W + P_{12}W), \ (H_0 + V_{\alpha\Lambda} - E)W = -V_{\alpha\Lambda}(U + P_{12}W), \ (1)$$

where P_{12} is the permutation operator for the α particles (particles 1,2), $V_{\alpha\alpha}$ and $V_{\alpha\Lambda}$ are the nuclear potentials of $\alpha\alpha$ and $\alpha\Lambda$ interactions, respectively, U is the Faddeev component corresponding to the rearrangement channel $(\alpha\alpha) - \Lambda$ and W corresponds to the rearrangement channel $(\alpha\Lambda) - \alpha$. The total wave function is expressed by the components U and $W: \Psi = U + (1 + P_{12})W$. The total orbital angular momentum is given by $\mathbf{L} = \ell_{\alpha\alpha} + \lambda_{(\alpha\alpha)-\Lambda} = \ell_{\alpha\Lambda} + \lambda_{(\alpha\Lambda)-\alpha}$, corresponding to two available channels of rearrangements.

The ground state of the $\alpha\alpha\Lambda$ system, having zero total angular momentum L, is considered as the $(\frac{1}{2})^+$ state of the ⁹_ABe hypernucleus. Possible combinations for relative momenta $\ell_{\alpha\alpha}$ and $\lambda_{(\alpha\alpha)-\Lambda}$ are (0,0), (2,2), (4,4), ..., and for $\ell_{\alpha\Lambda}$, $\lambda_{(\alpha\Lambda)-\alpha}$ are (0,0), (1,1), (2,2), (3,3), (4,4), Thus the pair of quantum numbers $\ell_{\alpha\alpha}$ and $\ell_{\alpha\Lambda}$ describe completely the angular states of subsystems.

To describe interactions in the $\alpha\alpha\Lambda$ system, local pairwise potentials are used. The nuclear $\alpha\alpha$ interaction is given by version "a" of the phenomenological Ali-Bodmer potential [1] having s-, d- and g-wave components which was modified in Ref. [6]. This potential has the following form, $V_{\alpha\alpha}(r) = \sum_{l=0,2,4} V_{\alpha\alpha}^l(r)P_l$, where P_l is a projector onto the state of the $\alpha\alpha$ pair with the orbital momentum l and the functions $V_{\alpha\alpha}^l(x)$ have the form of one or two ranges Gaussians

$$V_{\alpha\alpha}^{l}(r) = V_{\rm rep}^{l} \exp(-r/\beta_{\rm rep}^{l})^{2} - V_{\rm att}^{l} \exp(-r/\beta_{\rm att}^{l})^{2}.$$
 (2)

FIZIKA B 13 (2004) 2, 477-482

The parameters of partial components $V_{\alpha\alpha}^{l}(r)$ are given in the Table 1. The s-wave component $V_{\alpha\alpha}^{0}(r)$ has strong repulsive core which simulates Pauli blocking effect for the α 's at short distances.

TABLE 1. Parameters of the $\alpha \alpha$ and $\alpha \Lambda$ potentials for different pair angular momenta l.

System	Potential	l	$V_{\rm rep}^l$	$\beta_{\rm rep}^l$	$V_{\rm att}^l$	β_{att}^l
			(MeV)	(fm)	(MeV)	(fm)
αα	Ali-Bodmer [1]	0	125.0	1.53	30.18	2.85
		2	20.0	1.53	30.18	2.85
		4	_	—	30.0	0.35
$\alpha\Lambda$	TH [7]	0	_	—	60.17	1.2729
	Gibson [8]		_	—	43.48	1.5764
	Isle(DA) [11]		450.4	1.25	404.9	1.41
	MSA [3]		91.0	1.3	95.0	1.7
		1	33.4	1.3	39.4	1.7

For the $\alpha\Lambda$ interaction, a number of various potentials is used. These potentials have different shape and parameters, but reproduce well the experimental value of the binding energy of the ${}_{\Lambda}^{5}$ He hypernucleus which is considered as an s-wave bound state of the $\alpha\Lambda$ system. The Tang-Herndon (TH) potential [7] and Gibson I (Gibson) potential [8, 9] have the form of one-range Gaussian. The Maeda-Schmid potential (MS) [10] is a sum of two Woods-Saxon type functions

$$V_{\alpha\Lambda}(r) = V_{\rm rep}(\exp((r - r_{\rm rep})/a_{\rm rep}) + 1)^{-1} - V_{\rm att}(\exp((r - r_{\rm att})/a_{\rm att}) + 1)^{-1}$$

where $V_{\rm rep} = 18.09$ MeV, $V_{\rm att} = 35.98$ MeV, $r_{\rm rep} = 0.88$ fm, $r_{\rm att} = 1.72$ fm, $a_{\rm rep} = 0.2353$ fm, $a_{\rm att} = 0.3541$ fm. The Isle potential [11] has a form of two range Gaussian Eq.(2). In addition to these s-wave $\alpha\Lambda$ potentials, we use potential of Myint, Shinmura and Akaishi (MSA) proposed in Ref. [3], having p-wave component and two rank Gaussian form. General formula for $\alpha\Lambda$ potential is written by

$$V_{\alpha\Lambda}(r) = \sum_{l=0,1,\dots} V_{\alpha\Lambda}^l(r) P_l , \qquad (3)$$

where P_l is a projector onto the state of the $\alpha\Lambda$ system having the orbital momentum l, $V_{\alpha\Lambda}^l(r)$ are partial components of the potential. The parameters of the sand p -wave components are listed in Table 1.

3. Results

The coupled configuration-space Faddeev equations, Eq. (1), for the $\alpha\alpha\Lambda$ system are solved numerically, applying the method given in Ref. [12]. We use two different potential models. In the first model, the s-wave $\alpha\Lambda$ potential acts in all partial

FIZIKA B 13 (2004) 2, 477-482

waves of the $\alpha\Lambda$ subsystem: $V_{\alpha\Lambda}^{l}(r) = V_{\alpha\Lambda}^{0}(r)$, l = 1, 2, 3, 4. In the second model, we use two partial components of the $\alpha\Lambda$ potential Eq. (3). These are the s- and p-components $V_{\alpha\Lambda}^{l}(r)$, l = 0, 1, where $V_{\alpha\Lambda}^{0}(r)$ can be any potential from potentials considered above, and $V_{\alpha\Lambda}^{1}(r)$ is the p-wave component of potential that is given in Ref. [3]. The results of the calculations are listed in Table 2. For the first model, they are in good agreement with those of a recent Faddeev calculation [2]. In our

TABLE 2. Calculated binding energy $E_{\rm B}$ (in MeV) of the $\alpha\alpha\Lambda$ system for the Ali-Bodmer $\alpha\alpha$ potential and different models of the $\alpha\Lambda$ interaction. The Coulomb potential between α 's is not taken into account. Here $l_{\alpha\Lambda}$ and $l_{\alpha\alpha}$ are relative angular momenta of subsystems, $l_{\rm max} = \max\{l_{\alpha\Lambda}, l_{\alpha\alpha}\}$.

Model	$l_{\rm max}$	$l_{lpha\Lambda}$	$l_{\alpha\alpha}$	TH	MS	MSA	Isle(DA)
First	0	0	0	-6.844	-7.365	-8.392	-8.429
	1	0,1	0	-7.363	-8.278	-9.631	-9.768
	2	0,1,2	0,2	-7.786	-8.494	-9.758	-9.920
	3	0,1,2,3	0,2	-7.799	-8.503	-9.764	-9.935
	4	0,1,2,3,4	0,2,4	-7.813	-8.505	-9.765	-9.950
Cravo et al. [2]	-	0,1,2	0,2,4	-7.72	-8.49	_	-10.04
Second	4	0,1	0,2,4	-7.788	-8.050	-8.905	-8.948

calculations, all partial waves up to l = 4 were taken into account, but the first three waves $(l_{\alpha\Lambda} \leq 2, l_{\alpha\alpha} \leq 2)$ give the main contribution. By comparing the first and the second model, one can conclude that the p-wave contribution to the $\alpha\alpha\Lambda$ binding energy is too large. The more realistic $\alpha\Lambda$ potential model of Myint at al. [3], which has the s- and p-wave components, reduces p-wave contribution of the $\alpha\Lambda$ interaction.

TABLE 3. Binding energy $E_{\rm B}$ (in MeV) of the $\alpha\alpha\Lambda$ system, rms distance between two α 's $r_{\alpha\alpha}$ (in fm), rms distance between the center of α 's pair mass and hyperon $r_{(\alpha\alpha)-\Lambda}$, the most probable distance between two α 's $x_{\rm max}$ for different models of the $\alpha\Lambda$ interaction computed for $l_{\alpha\Lambda} = l_{\alpha\alpha} = 0$ (s-wave approximation). The binding energy $E_{\rm B}(V_{\alpha\alpha} = 0)$ in the case $V_{\alpha\alpha} = 0$ and the interaction energy of α pair is $\Delta B_{\alpha\alpha}$.

Potential	$E_{\rm B}$	$r_{\alpha\alpha}$	$r_{(\alpha\alpha)-\Lambda}$	$E_{\rm B}(V_{\alpha\alpha}=0)$	x_{\max}	$\Delta B_{\alpha\alpha}$
TH	-6.844	3.75	2.65	-9.601	2.4	2.757
Gibson	-7.429	3.69	2.67	-8.934	2.5	1.510
MS	-7.364	3.68	2.72	-8.079	2.5	0.715
MSA	-8.392	3.65	2.80	-8.056	2.6	-0.335
Isle(DA)	-8.429	3.64	2.82	-7.839	2.8	-0.590

FIZIKA B 13 (2004) 2, 477–482

To explain substantial disagreements of the binding energies calculated with different $\alpha\Lambda$ potentials, we computed the interaction energy between the α particles for the bound $\alpha\alpha\Lambda$ system, which is defined by the formula

$$\Delta B_{\alpha\alpha} = E_{\rm B} - E_{\rm B}(V_{\alpha\alpha} = 0),$$

where the binding energy $E_{\rm B}(V_{\alpha\alpha} = 0)$ of the $\alpha\alpha\Lambda$ system is calculated when $\alpha\alpha$ interaction is absent ($V_{\alpha\alpha} = 0$). Results of calculation, together with other physical characteristics, are presented in Table 3. In addition, we calculate the most probable configuration of the $\alpha\alpha\Lambda$ system. In Fig. 1, the distances between particles and their localization are shown. From the table and the figure, one can see that the $\alpha\Lambda$ potentials having a weak core (MS), or not having it at all (TH, Gibson), bring the α particles close together. However, at small distances, a repulsion starts between the α 's due to the presence of the strong repulsive core in the $\alpha\alpha$ potential, which decreases the $\alpha\alpha\Lambda$ binding energy.

Fig. 1. Most probable configuration of the $\alpha\alpha\Lambda$ system for various $\alpha\Lambda$ potentials. The upper numbers are distances between the α particles (in fm) and the lower ones are distances between α particle and hyperon.

4. Conclusion

The ${}^{9}_{\Lambda}$ Be hypernucleus is considered in the framework of the $\alpha\alpha\Lambda$ cluster model. We have studied the contributions of higher partial waves of the $\alpha\Lambda$ interactions to the binding energy of the ground state. We found that the p-wave contribution of $\alpha\Lambda$ interaction is unnatural large when potential model is applied in which the s-wave of the potential acts in all partial waves of the $\alpha\Lambda$ subsystem. This contribution can be reduced by including a realistic p-wave component of the $\alpha\Lambda$ interaction. The differences between the $\alpha\alpha\Lambda$ binding energies calculated for various $\alpha\Lambda$ potentials can be explained by influence of a repulsive core of nuclear $\alpha\alpha$ interaction.

Acknowledgements

This work was partially supported by the Department of Defenses through the grant No.DAAD 19-01-1-0795. The work of V.M.S and I.N.F was supported by the RFFI under Grant No. 02-02-16562.

FIZIKA B 13 (2004) 2, 477-482

References

- [1] S. Ali and A. R. Bodmer, Nucl. Phys. 80 (1966) 99.
- [2] E. Cravo, A. C. Fonseca and Y. Koike, Phys. Rev. C 66 (2002) 014001-7.
- [3] K. S. Myint, S. Shinmura and Y. Akaishi, Eur. Phys. J. A 16 (2003) 21; nucl-th/0209090.
- [4] Th. A. Rijken, V. G. J. Stoks and Y. Yamamoto, Phys. Rev. C 59 (1999) 21.
- [5] L. D. Faddeev and S. P. Merkuriev, Quantum Scattering Theory for Several Particle Systems, Kluwer Academic, Dordrecht (1993).
- [6] D. V. Fedorov and A. S. Jensen, Phys. Lett. B 389 (1996) 631.
- [7] C. Tang and R. C. Herndon, Phys. Rev. 138 (1965) B637.
- [8] B. F. Gibson, A. Goldberg and M. S. Weiss, Phys. Rev. C 6 (1972) 741.
- [9] S. Oryu, H. Kamada, H. Sekine, H. Yamashita and M. Nakazawa, Few-Body Systems 28 (2000) 103.
- [10] S. Maeda and E. W. Shmid, Few-Body Problem in Physics, Vol. II, Elsever Science Publisher B.V. (1984) 379.
- [11] Y. Kurihara, Y. Akaishi and H. Tanaka, Phys. Rev. C 84 (1985) 971.
- [12] J. Bernabeu, V. M. Suslov, T. A. Strizh and S. I. Vinitsky, Hyperfine Interaction 101/102 (1996) 391.

NAKUPINSKI RAČUN ⁹_ABe HIPERJEZGRE FADDEEVOM METODOM

Načinili smo račune Faddeevom metodom u konfiguracijskom prostoru za nakupinski model $\alpha\alpha\Lambda$ hiperjezgre ⁹_ABe primjenom različitih potencijala. Za nuklearnu sastavnicu međudjelovanja $\alpha\alpha$ primijenili smo samo fenomenološki Ali-Bodmerov potencijal. Energiju vezanja hiperjezgre ⁹_ABe smo računali dvama različitim potencijalnim modelima. U prvome se rabi s-valni potencijal $\alpha\Lambda$ koji djeluje na sve parcijalne valove u podsustavu $\alpha\Lambda$. U drugome, rabi se nov realističniji potencijal $\alpha\Lambda$ koji sadrži s- i p-parcijalne sastavnice. Proučavali smo također učinak sredice u potencijalu $\alpha\alpha$.

FIZIKA B 13 (2004) 2, 477–482