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An exact solution for the thick domain wall in Lyra geometry is found. The energy
density decreases on both sides of the wall and space-time is reflection symmetric
with respect to the wall. The space-time shows that the thick domain wall will not
collapse. It is shown that the gravitational field experienced by a test particle is
repulsive.
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1. Introduction

At the early stages of its evolution, the Universe underwent phase transitions
and as a result, several topological defects occured, namely, domain walls, cosmic
strings, monopoles and textures [1,2]. The existence of domain wall is associated
with the breaking of a discrete symmetry, i.e., the vacuum manifold M consists
of several disconnected components. So the homotopy group π0(M) is non-trivial
(π0(M) /= 1) [2]. Recently, Pando, Valls-Gabaud and Fang [3] proposed that the
topological defects are responsible for the structure formation of our Universe. In
general relativity, domain walls are getting special attention due to their peculiar
and interesting gravitational effects. In recent years, due to a new scenario of galaxy
formation as suggested by Hill, Schram and Fry [4], the study of domain walls of
finite thickness has gained renewed cosmological interest. Also, the study of domain
walls and space-times associated with them, have received considerable attention
due to their application in the structure formation of the Universe [5].

Many authors [6,7] have discussed non-static solutions of the Einstein scalar-
field equations for thick domain wall. But these solutions have a peculiar behavior.
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In these solutions, the energy scalar is independent of time while the metric tensor
depends on both space and time. Subsequently, Wang [8] obtained a class of solu-
tions to the Einstein’s equations representing the gravitational collapse of a thick
domain wall.

Thick domain walls are characterized by the energy momentum tensors

Tij = ρ(gij + wiwj) + pwiwj where wiw
i = −1 , (1)

and ρ is the energy density of the wall, p is the pressure in the direction normal to
the plane of the wall and wi is a unit space like vector in the same direction.

In last few decades, there has been a considerable interest in alternative theo-
ries of gravitation. The most important among them are the scalar-tensor theories
proposed by Lyra [9] and by Brans-Dicke [9]. Lyra [9] proposed a modification Rie-
mannian geometry by introducing a gauge function into the structureless manifold
that bears a close resemblance to the Weyl’s geometry. In general relativity, Ein-
stein succeeded in geometrising gravitation by identifying the metric tensor with
the gravitational potentials.

In the scalar-tensor theory of Brans-Dicke, on the other hand, scalar field re-
mains alien to the geometry. Lyra geometry is more in keeping with the spirit of
Einstein’s principle of geometrisation, since both the scalar and tensor fields have
more or less intrinsic geometrical significance. In the consecutive investigations,
Sen [10] and Sen and Dunn [10] proposed a new scalar-tensor theory of gravitation
and constructed an analog of the Einstein field equation based on Lyra geometry,
which in normal gauge may be written as

Rik −
1

2
gikR +

3

2
φiφk −

3

4
gikφmφm = −8πTik , (2)

where φi is the displacement vector and other symbols have their usual meaning as
in Riemannian geometry.

According to Halford [11], the present theory predicts the same effects within
the observational limits, as far as the classical solar system tests are concerned, as
well as tests based on the linearised form of field equations. Soleng [11] has pointed
out that the constant displacement field in Lyra geometry will either include a
creation field and be equal to Hoyle’s creation field cosmology, or contain a special
vacuum field, which together with the gauge vector term may be considered as a
cosmological term.

Subsequent investigations were done by several authors in the scalar tensor-
theory and cosmology within the framework of Lyra geometry [12]. Recently, Farook
has studied some topological defects within the framework of Lyra geometry [13].

In this work we shall deal with the domain wall, assuming time-dependent dis-
placement vectors based on Lyra geometry in normal gauge, i.e., the displacement
vector

φi = (β(t), 0, 0, 0) (3)
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and look further whether the domain wall shows any significant properties due to
introduction of the gauge field in the Riemannian geometry.

2. Field equations and their solutions

In this section, we develop a general relativistic model of a plane-symmetric
thick domain wall within the framework of Lyra geometry.

The metric ansatz describing a plane-symmetric space-time is

ds2 = eA(dt2 − dz2) − eC(dx2 + dy2) , (4)

where A = A(z, t) and C = C(z, t)

The energy-stress components in the co-moving coordinates for the thick domain
wall are given by

T t
t = T x

x = T y
y = ρ , T z

z = −p and T z
t = 0 . (5)

The field equation (2) for the metric (3) reduces to

1

4
e−A[−4C ′′

− 3(C ′)2 + 2A′C ′] +
1

4
e−A[C∗2 + 2A∗C∗] +

3

4
β2e−A = 8πρ , (6)

1

4
e−A[4C∗∗ + 3C∗2

− 2A∗C∗] +
1

4
e−A[−(C ′)2 − 2A′C ′] +

3

4
β2e−A = −8πp , (7)

1

4
e−A[−2A′′

− 2C ′′
− (C ′)2] +

1

4
e−A[2C∗∗ + 2A∗∗ + C∗2] −

3

4
β2e−A = 8πρ (8) ,

1

2
[−C∗′ + C∗(A′

− C ′) + C ′A∗] = 0 . (9)

[‘*’ and ‘′’ are differentiations with respect to t and z, respectively. ]

To solve the field equations, we shall assume the separable form of the metric
coefficients as follows

A = A1(z) + A2(t) and C = C1(z) + C2(t) . (10)

From Eq.(9), we get

(C ′

1 − A′

1)/C ′

1 = A∗

2/C∗

2 = 1 − m, (11)

where (1 − m) is the separation constant, This implies

A1 = mC1 and A2 = (1 − m)C2 . (12)
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For the reason of economy of space, we skip the details of the intermediate steps
and write down the final results as

C2 = ln[cosh(kt)] , (13)

and

C1 = ln[cosh(kz)] , (14)

where k2 is the separation constant.

Correspondingly, the energy density and pressure of the wall are given by

8πρ = 8πp = −
1

4
(2m + 1)sech3(kz) sech(kt) . (15)

The displacement vector is given by

3

4
β2 =

1

4
k2[(3 − 2m)sech2(kt)] . (16)

3. Properties of the solutions

For domain-wall solution, the physical requirement ρ > 0 would be satisfied
provided 2m + 1 < 0, i.e., m < −1/2.

It is interesting to note that when m = −1/2, ρ and p vanish, resulting in an
empty space-time given by the metric

ds2 = sech1/2(kz) cosh3/2(kt) [dt2 − dz2] − cosh(kz) cosh(kt) [dx2 + dy2] . (17)

One can see that the space-time of the solution is reflection-symmetric with
respective to the wall. For a thick domain wall, it is desirable that the pressure and
density decrease on both sides of the wall away from the symmetry plane, and fall
of to zero as z → ±∞.

We also see that ρ and p have a single maximum at z = 0 and tend to zero as
z → ±∞.

Thus, the solutions given in (12) – (14) represent a single domain wall with its
center located at z = 0.

Here the energy density and pressure of the wall are space and time dependent
and the space-time has no particle horizon, as one can show from Eqs. (12) – (14)
(which is contrary to the case studied in Refs. [6] and [7], but similar to Wang’s wall
[8]). However, in contrast to the Wang’s wall, our domain wall in Lyra geometry
never collapses.

Another aspect of the domain wall is the effect on test particle in its gravitational
field. Let us consider an observer with the four-velocity given by

Vi = coshm/2(kz) cosh(1−m)/2(kt) δt
i .
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Then we obtain the acceleration vector Ai as

Ai = V i Xk V k =
1

2
(mk) tanh(kz) sechm(kz) sech(1−m)(kt) δi

z . (18)

Since the condition of positive energy implies m < −1/2, so Az is negative. It
follows that an observer who wishes to remain stationary with respect to the wall
must accelerate towards the wall. In other words the wall exhibits a repulsive nature
to the observer.

The repulsion of the wall is attributed to the fact that the pressure of the wall in
the perpendicular direction is negative, which is similar to the case study in Refs.
[6] and [7], but contrary to the Wang’s domain wall.

Thus, our thick domain in Lyra geometry exhibits peculiar features: some prop-
erties are similar and some are contrary to The Wang’s domain wall, and at the
same time, some properties are similar and some are contrary to the Goetz and
Mukherji’s domain wall. It seems that in Lyra geometry, Weyl’s concept of gauge,
which is essentially a metrical concept, is modified by the introduction of a gauge
function in the structureless manifold.

We note that the displacement vector will not exist after infinite time. For future
work, it will be interesting to study different properties of other topological defects
within the framework of Lyra geometry.
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OPĆI RELATIVISTIČKI GRANIČNI ZID U LYRINOJ GEOMETRIJI

Našli smo točno rješenje za debeo granični zid u Lyrinoj geometriji. Pad gustoće
energije na obje strane zidnog vremena-prostora je simetričan u odnosu na zid.
Vrijeme-prostor pokazuju da se zid ne urušava. Gravitacijsko polje koje osjeća
ispitna čestica je odbojno.
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