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Received 15 December 2005 Accepted 30 December 2005

Online 6 February 2006

Regularization of singular solutions for the static spherically symmetric extremelly
charged dust in the Majumdar-Papapetrou system has been investigated. Singular-
ities are of such a type that solutions become physically unacceptable since phys-
ically relevant quantities (metric invariants) are singular as well. With a simple
redefinition of the charge/energy distributions, these solutions can be regularized.
A spectrum of solutions with a number of zero-nodes in the metric tensor is found,
and it is shown that their regularization can be accomplished either by using a
δ-shell, or a thick shell distribution of matter. The bifurcating behaviour of regular
solutions is not present any more, but quantized-like behaviour in the total mass
allocated to the solutions is observed.
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1. Introduction

It is always interesting to address the problem of the gravitational collapse of
classical matter within the Einstein theory, since an exact solution of the Einstein
equations with the general form of matter is not known. Various possible scenar-
ios of the collapse have been envisaged and investigated. Recent objections to a
rather popular one, i.e. to the black-hole scenario, have been further encouraged by
constructing alternative models that could, under certain conditions, prevent the
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formation of black holes [1, 2, 3, 4, 5, 6]. However, under different initial energy con-
ditions, the collapsing system could also admit timelike or null singularities which
(for an observer co-moving with the matter) could be naked, i.e. the singularities
are encountered before the boundary enters its Schwarzschild radius.

In this paper we investigate further the regularization of a newly found class
of static solutions to Einstein–Maxwell equations for the extremelly charged dust
(ECD) model of matter, and discuss the regularization procedures for removing the
naked singularity that is present in these solutions. The solutions show remarkable
discrete properties with respect to the amount of allocated mass. The singularities
(zeros of the metric profile function that we use) are mimicking the behaviour of a
quantum system with regard to its higher and higher excitations. It will be shown
that such solutions can be regularized by modifications in the distribution of ECD.
First we use the δ-shells, which may not be considered to be very physical, but are
a useful tool in the approach to difficult nonlinear problems [3, 5, 7, 8]. We also use
more illustrative and more general thick shells.

The paper can be outlined as follows: In Sec. 2, we review equations of the
structure of static spherically symmetric configurations of ECD in the Majumdar-
Papapetrou (MP) formalism [9, 10, 11], and we give the expressions for the total
mass and charge of the system. In Sec. 3, we discuss the properties of solutions that
one obtains in the dust-free regions of space. The solutions with non-negative rest-
energy density of the ECD are considered in Sec. 4. There we review a new class of
solutions that we found. These solutions involve a zero crossing in the metric profile
function that we are using, U(R) = (−gRR)1/2 = (gtt)

−1/2, which corresponds to
a spacetime singularity, and they do not show the bifurcating behaviour typical of
regular solutions in this context [12]. In addition, solutions with more than one zero
in the metric profile function, corresponding to higher amounts of allocated mass,
are shown to exist. Their behaviour follows the pattern set up by the first one.
In Sec. 5, we focus on the singular solutions considered in earlier sections, and we
show that in all cases the introduction of a single spherical δ-shell of ECD suffices
to remove the spacetime singularity, leaving the structure of the spacetime outside
of the shell unchanged. In some cases, depending on the position of the shell, the
rest-energy density of the ECD on the shell must be allowed to be negative. Sec. 6
is devoted to the thick-shell regularization. Apart from its more attractive form,
the procedure shows that is is possible to accomplish the regularization with a more
general dust distribution than the one used before. In Sec. 7 conclusions are given.

2. The Majumdar–Papapetrou formalism

In a system involving electrically charged dust (pressureless fluid), the coupled
Einstein–Maxwell equations,

Gµ
ν = 8π Tµ

ν = 8π (Mµ
ν + Eµ

ν) , (1)

Fµν
;ν = 4π jµ, (2)
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must be satisfied. In the Einstein equation (1), Gµ
ν is the Einstein tensor, and the

energy-momentum tensor Tµ
ν consists of

Mµ
ν = ρ uµuν , (3)

due to the dust with the rest-energy density ρ and 4-velocity uµ, and

Eµ
ν =

1

4π

(

−FµσFνσ +
1

4
δµ
ν F ρσFρσ

)

, (4)

due to the electromagnetic field of strength Fµν . The non-homogeneous Maxwell
equation (2) relates Fµν to the electric charge 4-current jµ, semicolon denoting
covariant differentiation. Using σ for the density of the electric charge, and uµ for
its 4-velocity, the charge 4-current is

jµ = σ uµ . (5)

The homogeneous Maxwell equation, F[µν;σ] = 0, brackets denoting antisym-
metrization, is satisfied by expressing Fµν in terms of the 4-potential Aµ,

Fµν = ∂µAν − ∂νAµ . (6)

In the case of static dust, following the assertion of Majumdar [9] and of Papa-
petrou [10], one may adopt the harmonic coordinates where the line element has
the form

ds2 = U−2 dt2 − U2 (dX2 + dY 2 + dZ2) , (7)

and the metric profile function U depends on the spacelike coordinates X, Y and
Z only. The non-zero components of the Einstein tensor for this metric are

G0
0 = (−2U∇2U + δkl∂kU∂lU)/U4, (8)

and

Gi
j = (2δik∂kU∂jU − δi

jδ
kl∂kU∂lU)/U4. (9)

(We use roman indices i, j, .. to loop over spacelike coordinates, while greek in-
dices loop over all four coordinates. ∇2 = δkl∂k∂l denotes the three-dimensional
Laplacian operating in the harmonic coordinates.) The 4-velocity of static matter,
normalized so that uµuµ = 1, is

uµ = U−1δ0
µ . (10)

The energy-momentum tensor due to static dust (3) is, therefore,

Mµ
ν = ρ δµ

0 δ0
ν , (11)
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where we assume that the rest-energy density of the dust, ρ = ρ(X,Y,Z), is non-
negative. The electromagnetic 4-potential has the scalar component only, Aµ =
Φ δ0

µ, Φ = Φ(X,Y,Z). The nonzero components of the energy-momentum tensor
(4) due to electrostatic field are

E0
0 = δkl∂kΦ∂lΦ/8π , (12)

and

Ei
j = (2δik∂kΦ∂jΦ − δi

jδ
kl∂kΦ∂lΦ)/8π. (13)

Consequently, the nontrivial Einstein equations are

(−2U∇2U + δkl∂kU∂lU)/U4 = 8πρ + δkl∂kΦ∂lΦ , (14)

and

(2δik∂kU∂jU − δi
jδ

kl∂kU∂lU)/U4 = 2δik∂kΦ∂jΦ − δi
jδ

kl∂kΦ∂lΦ . (15)

Contracting (15) with δj
i gives

U−4δkl∂kU∂lU = δkl∂kΦ∂lΦ , (16)

which can be used to eliminate the δkl∂kΦ∂lΦ term from (14). The Einstein equa-
tions thus reduce to a nonlinear version of the Poisson equation,

∇2U = −4πρU3. (17)

Eq. (16) leads to the simple relation between the metric, U , and the electrostatic
potential, Φ, i.e. among the metric and the electrostatic field. Setting k = l in (16)
one obtains

∂kU

U2
= ∓∂kΦ , (18)

which directly integrates to give

U−1 = ±Φ + const . (19)

The ± sign in the above relations, and throughout the paper, reflects the (global)
freedom in the choice of the sign of the electric charge.

The only nontrivial component of the nonhomogeneous Maxwell equations (2)
is F 0ν

;ν = 4πj0. The LHS can be rewritten using the well-known relation Fµν
;ν =

|g|−1/2∂ν(|g|1/2Fµν), g = det[gµν ], valid for any antisymmetric tensor Fµν . Then
using (6) and (18) on the LHS, and (5) and (10) on the RHS, it reduces to

∇2U = ∓4πσU3, (20)
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which has the same structure as (17). However, (17) and (20) must be satisfied
simultaneously. This is possible only if ρ = ±σ, i.e. if the rest-energy density of the
dust ρ equals (in relativistic units) the (±) density of the electric charge σ. As the
rest-energy density of the dust, ρ, is taken to be non-negative, it follows that the
density of the electric charge is of the same sign everywhere. Such matter is called
extremelly charged, or electrically counterpoised dust (ECD). Static configurations
of ECD satisfy the equation

∇2U = −4πρU3, σ = ±ρ , (21)

and are known as Majumdar–Papapetrou (MP) systems [9, 10]. For a formulation
of the MP formalism in d ≥ 4 dimensional spacetimes, as well as for a recent
compilation of references dealing with MP systems, see Ref. [11].

While one of the most remarkable features of the MP systems is that they do
not require any spatial symmetry, spherically symmetric and asymptotically flat
MP systems have played an important role in obtaining valuable insights into the
properties of astrophysically plausible systems, see eg. Ref. [13], and are sometimes
called ‘Bonnor stars’. Since in this paper we are considering such systems, we
use the rest of this section to prepare the relations that are specific for spherical
symmetry. The harmonic line element (7) can be written

ds2 = U(R)−2 dt2 − U(R)2 (dR2 + R2 dΩ2) , (22)

where dΩ2 = dϑ2 + sin2 ϑ dϕ2, and the MP equation (21) reads

R−2 (R2U ′)′ = −4π ρU3, (23)

the prime denoting differentiation with respect to the harmonic coordinate R. The
energy-momentum tensor due to matter Mµ

ν is still given by (11), while the energy-
momentum tensor due to electrostatic field acquires the diagonal form

Eµ
ν = Φ′2 diag(+,+,−,−)/8π . (24)

Here we comment on the structure of the complete energy-momentum tensor, Tµ
ν =

Mµ
ν + Eµ

ν , with regard to the fulfillment of the standard energy conditions. The
total rest-energy density, ρtot = T t

t = ρ+Φ′2/8π, involves the contribution from the
rest-energy density of the ECD, ρ, which is non-negative by assumption, and the
manifestly non-negative contribution of the electrostatic field. The total rest-energy
density ρtot is therefore non-negative. The pressures are of purely electrostatic
origin. The transverse pressures, ptr = −Tϑ

ϑ = −Tϕ
ϕ = Φ′2/8π, are non-negative,

while the radial pressure, prad = −TR
R = −Φ′2/8π, is of equal strength, but of the

opposite sign. Noting that ρtot = ptr + ρ, and recalling that by assumption ρ > 0,
these relations can be summarized as follows:

−ptr = prad ≤ 0 ≤ ptr ≤ ρtot = ptr + ρ . (25)
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The weak [WEC; ρtot ≥ 0 and ρtot +pi ≥ 0], null [NEC; ρtot +pi ≥ 0], strong [SEC;
ρtot +

∑

i pi ≥ 0 and NEC] and dominant [DEC; ρtot ≥ 0 and ρtot ≥ |pi|], energy
conditions are all satisfied, as expected for classical matter and fields.

If ECD is localized within some radius, we expect the spacetime to be asymp-
totically flat as R → ∞. The strength of the electrostatic field is expected to fall
off as R−2 (see next section), i.e. we expect U and Φ to approach constant values.
Without loss of generality, one can require

lim
R→∞

U = 1 and lim
R→∞

Φ = 0 . (26)

This determines the value of the integration constant in (19), and we have

U−1 = ±Φ + 1 (27)

everywhere.

The total amount of electric charge in a spherically symmetric MP system that
does not involve spacetime singularities is given by the invariant volume integral of
the conserved quantity j0

Q =

∫

j0 √−g d3X . (28)

Using (5) to eliminate j0, and then (23) to eliminate ρ, one obtains Q =

±
∞
∫

0

(R2U ′)′dR, which integrates to

Q = ∓R2U ′|∞0 . (29)

The gravitational mass of such system is given by the Tolman–Whittaker [14, 15]
expression

M =

∫

(2T 0
0 − Tµ

µ )
√−g d3X . (30)

Using (11) and (24), the integral is 4π
∞
∫

0

(ρ + Φ′2/4π)U2 R2dR, and using (23) and

(27) to eliminate ρ and Φ′ it integrates to

M = −R2U ′/U |∞0 . (31)

In asymptotically flat nonsingular MP spacetimes, M = ±Q equals the Arnowitt-
Deser-Misner (ADM) mass of the configuration [16]. However, when singularities
are present, the integrals (30) and (28) cannot be straightforwardly applied. We
deal with these issues in some detail in next sections.

We close this section by giving some relations that are useful when physical
interpretation of the solutions is considered. The first deals with the rescaling of
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solutions. If certain U(R) and ρ(R) solve Eq. (23), one is allowed to rescale the
functions according to

U(R) −→ U∗(R) = U(αR) ,
ρ(R) −→ ρ∗(R) = α2ρ(αR) ,

(32)

where α > 0 is the scaling parameter. As a consequence, the mass scales according
to

M −→ M∗ = M/α . (33)

Another important issue is the relation among the the harmonic coordinates with
the line element (22) and the curvature coordinates with the line element

ds2 = B(r) dt2 − A(r) dr2 − r2 dΩ2 . (34)

Using the relations

r = UR , B = U−2 , A−1/2 = 1 +
R

U

dU

dR
, (35)

the metric components can be transformed from one coordinate system to another.
Throughout this paper, we will consistently use (uppercase) R for the harmonic
coordinate and (lowercase) r for the curvature coordinate.

3. The ρ = 0 solution (ERN)

If the density of the ECD is zero throughout the space, the nonlinear differential
Eq. (21) reduces to the simple Laplace equation. Its general spherically symmetrical
solution is

U(R) = k + m/R , (36)

where k and m are integration constants. To obtain asymptotically flat spacetime
for R → ∞, one sets k = 1, according to (26). Clearly, setting m = 0 yields
Minkowski spacetime.

Let us now consider the case when m > 0. In the metric (22), at R = 0, the
component gRR = −U2 diverges, and gtt = U−2 has a double zero. The area of
the spacelike surface R = 0 is 4πm2, and all metric invariants (e.g. RµνκλRµνκλ =
8m2(m2 + 6R2)/(m + R)8) are regular. This suggests that at R = 0 there is an
event horizon beyond which the metric can be analytically extended into the region
R < 0. At R = −m, on the other hand, the metric component gtt diverges, and the
area of the spacelike surface R = −m is zero. This indicates a point-like singularity
beyond which there is no analytical extension of the metric.

In the curvature coordinates, using the relations (35), the metric is

ds2 = (1 − m/r)2dt2 − (1 − m/r)−2dr2 − r2dΩ2, (37)
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which is the extremal Reissner-Nordström (ERN) metric, describing a static spher-
ically symmetric black hole of mass m > 0 and electric charge q = ±m. The
harmonic coordinate R, and the curvature coordinate r, are related by r = R + m.
At R = 0 (r = m), there is the event horizon, and at R = −m (r = 0), a point-like
singularity (Fig. 1).

Fig. 1. Penrose–Carter diagrams of the ERN spacetime: the m > 0 black-hole case
(left) and the m < 0 naked singularity case (right). Future and past null-infinities
are labeled I+ and I−. The m > 0 diagram can be continued (tessellated) in the
upward (timelike) direction.

The charge integral (28) evaluated in the range −m < R < ∞ gives Q = 0. This
is not surprising since ρ = 0 everywhere. The mass integral (30), on the other hand,
diverges. Again, since it integrates the energy of the electrostatic field of a point
charge (singularity at R = −m, r = 0), in analogy with classical electrodynamics,
this is not an unexpected feature.

It is instructive to consider the solution (36) with negative ADM mass as well.
Such solution is generated by setting m < 0. Then at R = |m| the metric profile
function U has a zero crossing, the metric component gRR has a double zero, and
gtt diverges. The area of the spacelike surface R = |m| is zero, and metric invariants
(eg. RµνκλRµνκλ) are singular. The metric cannot be analytically extended through
this singularity. Since there is no event horizon to shield this singularity from the
outer space, this is a naked singularity (Fig. 1). (Note that the metric one obtains
with m < 0 and |m| < R < ∞ is isometric to that with m > 0 and −∞ < R < −m.)
The charge integral (28) evaluated in the range |m| < R < ∞ gives Q = 0 and the
mass integral (30) diverges.

4. Solutions with non-negative ECD density

Spherically symmetric Majumdar-Papapetrou systems can be constructed by
numerical integration of (23) for the assumed distribution of the ECD specified by
the non-negative function ρ(R). However, the structure of the resulting spacetime
strongly depends on the shape of ρ(R).
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If ρ(R) vanishes as R → ∞ more rapidly than R−3, the solutions are asymptot-
ically flat at infinity and behave like 1 + m∞/R, where the parameter m∞ is the
ADM mass of the configuration. The boundary conditions for such solutions can
be formulated as

lim
R→∞

U(R) = 1 and lim
R→∞

R2U′(R) = −m∞ . (38)

Given the ECD distribution ρ(R), Eq. (38) allows integration of the second order
ordinary differential equation (23) as an initial value problem. If the resulting
function U(R) has a node at some R > 0, then there is a naked singularity. This
can be seen by following the same argument as in the case of negative mass ERN
spacetime (Sec. 3). On the other hand, if there is no nodes, but U(R) diverges
as one approaches R = 0, then the spacetime involves an event horizon, and the
solution to (23) in the range 0 < R < ∞ covers only the region of the spacetime
outside of the event horizon. Only the solutions where U(R) is finite and nonzero
for 0 ≤ R < ∞ are regular everywhere. Such solutions can be obtained by imposing
an additional boundary condition to control the behaviour of the function U(R)
as R → 0. Since for R → 0 one can expect the general solution to behave like
U(R) = m0/R + const ., the boundary condition can be written

lim
R→0

R U(R) = m0 , (39)

where m0 = 0 ensures the regularity at R = 0. The spacetime is asymptotically flat
and regular throughout if U(R) fulfils the conditions (38) and (39) with m0 = 0,
and has no nodes.

To accommodate the additional boundary condition, one can use a factor η
multiplying the source term in (23), i.e. one solves

R−2 (R2U ′)′ = −4π η ρ(R)U3(R) , (40)

and that with the conditions (38) and (39) now presents a boundary value problem.
A number of diverse ECD distributions considered in Ref. [12] revealed that regular
solutions do not exist for values of η greater than some critical value ηc, which
however depends on the particular choice of ρ(R). The solution corresponding to
ηc was called critical, and the corresponding ADM mass was labeled mc. In the
range 0 < η < ηc, the critical solution bifurcates into two independent solutions
with ADM masses m− and m+ that obey 0 < m− < mc < m+. As η → 0 the ‘low
mass (m−) bifurcation branch’ produces spacetimes that are asymptotically flat
everywhere. The ‘high mass (m+) bifurcation branch’, on the other hand, produces
spacetimes that asymptotically coincide with the external part of the ERN metric.
Such (regular) configurations allow arbitrarily large red-shifts [13, 17], and are
known as ‘quasi black holes’ [12, 18].

Here we used the ECD distribution

ρ(R) = η ρ0 exp(−(R/R̃)2) , (41)

where ρ0 and R̃ scale the solution so that the critical parameters are mc = 1 = ηc

(for numerical values see Ref. [12]). By numerical integration, we computed the
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solutions to (40) for the metric profile functions U(R) with zero, one, and two nodes,
subject to boundary conditions (39) with m0 = 0, and (38) with a wide range of
values for m∞. The relation among the ADM mass m∞ and the source strength
η in these solutions is shown in Fig. 2). The solutions without nodes generate the
regular spacetimes that were discussed above. The upper mass bifurcation branch
leads to quasi black-hole spacetimes, while the lower mass bifurcation branch passes
through the Minkowski spacetime (η = 0, m∞ = 0) and enters the regime where
both η and m∞ are negative, which we do not consider any further. The solutions
with one or more nodes (outermost node corresponding to the naked singularity)
show similar behaviour in the relation among η and m∞, except that the critical
point (bifurcation turning point) is displaced into the negative ADM mass region.
Only the upper part of the upper mass bifurcation branch is in the range of positive
m∞ values.

1 10 50
Η

-1

1

3

5

m¥

Fig. 2. Relation among the ADM mass m∞ and the source strength η of the ECD
distribution (41) in solutions with zero, one and two nodes (reading from left to
right) in the metric profile function U(R) (shown in Fig. 3), satisfying the boundary
conditions (38) and (39) with m0 = 0. (Non-linear scaling is used on the η-axis.)

The metric profile functions U(R) for the solutions with zero, one, and two
nodes, obtained with m∞ = 1, are shown in Fig. 3. Numerical values of the related
parameters are given in Table 1. Since all these solutions obey the same bound-
ary condition as R → ∞, they can not be distinguished by a distant observer. The

TABLE 1. Numerical values of the parameters of the solutions shown in Fig. 3:
source strength η, coordinate of the outermost node R0, first derivative of the
metric profile function at the node U ′(R0), coordinate of the outermost maximum
Rm, U(Rm), the integrals (28) and (30), Q and M . For solutions with nodes the
integrals Q and M are evaluated over the range R0 < R < ∞.

Nodes η R0 U ′(R0) Rm U(Rm) Q M

0 1.000 - - - - 1.000 1.000

1 7.291 0.927 2.541 2.795 1.304 3.183 ∞
2 19.558 1.416 1.995 3.375 1.263 4.998 ∞
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metric components in the curvature coordinates for the solution with one node
are shown in Fig. 4. If U(R) has its (outermost) maximum at Rm, then at rm =
Rm U(Rm) there is the minimum in B(r), and A(rm) = 1. In the example shown
in Fig. 4, we have rm > 2m∞, but with increasing the value of m∞ (going up the
bifurcation branch), the ratio rm/m∞ decreases and it is possible to reach solutions
where rm < m∞. One such example is the m∞ = 50 solution shown if Fig. 5 where
it can be seen that by climbing the upper bifurcation branch, the metric is coming
arbitrarily close to having a horizon that shields the singularity from the outer
space. We therefore conclude that the singular solutions can be used to construct
quasi-black holes in the similar way the regular solutions can be used [12].

1 10
R

-10

-1

1

10

UHRL

Fig. 3. Metric (22) profile function U(R) for the ECD distribution (41), satisfying
boundary conditions (38) with m∞ = 1 and (39) with m0 = 0. Solutions with
zero, one and two nodes (solid lines) are shown. Profile function U = 1 + 1/R
representing unit mass/charge ERN spacetime and U = 1 (dashed lines) is shown
for comparison. (Non-linear scaling is used on both axes.)

m¥ 2m¥ rm

r

1

B, A-1

Fig. 4. The metric (34) components gtt = B(r) (dashed line) and grr = 1/A(r)
(solid line) for the solution with one node satisfying boundary conditions m0 = 0
and m∞ = 1. The metric components B(r) = 1/A(r) = (1 − m∞/r)2 for the
ERN, B(r) = 1/A(r) = 1 − 2m∞/r for the Schwarzschild, and A = B = 1 for the
Minkowski metric are shown for comparison (dotted lines).
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m¥rm

r

0.01

0.02

B, A-1

Fig. 5. The metric (34) components gtt = B(r) (dashed line) and grr = 1/A(r)
(solid line) for the solution with one node satisfying boundary conditions m0 = 0
and m∞ = 50. The metric components B(r) = 1/A(r) = (1−m∞/r)2 for the ERN
metric are shown for comparison (dotted line).

In the case of the regular solutions, the charge (28) and mass (30) integrals obey
the expected relation: M = ±Q = m∞. This is not so in the case of the solutions
with nodes where the integrals are evaluated over the range R0 < R < ∞, R0 being
the coordinate of the outermost node (naked singularity). The values in the Table 1
show that the value of the charge integral Q is higher than the value the distant
observer would expect on the basis of the asymptotic behaviour of the ERN metric.
We obtained Q > m∞ and the mass integral M diverges.

5. Regularization of solutions I: The δ-shell

In all singular MP systems considered in preceding sections, we have shown that
the integrals (28) for the charge, Q, and (30) for the mass, M , of the system do
not give the values which are in accord with the asymptotic behaviour of the ERN
metric. The ERN metric is characterized by the single parameter m, which is the
ADM mass, and in relativistic units its value equals the (±) charge of the system.
The relation M = ±Q = ADMmass) is obeyed by the regular MP systems, but not
by those that involve a spacetime singularity.

We now look for the possible modification of the ECD distribution for the sin-
gular configurations that can remove the singularity, and thus restore the expected
relation among the mass and charge parameters, keeping the external metric and
electrostatic field unchanged. It turns out that in all singular configurations con-
sidered so far, this can be accomplished by introducing a single spherical shell of
ECD. The amount of the ECD on the shell must be adjusted so that in the inside
of the shell the metric becomes flat and the electrostatic field vanishes. To simplify
the calculations, we will use δ-shells, keeping in mind that similar behaviour is
expected for shells with finite thickness (see next section).

Let us first consider the ERN black hole case (U(R) = 1 + m/R, m > 0, or
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in curvature coordinates, metric (37)). The δ-shell distribution of ECD located at
harmonic radius R = a (corresponding to curvature radius r = m + a) can be
written

ρδ(R) = ηδ δ(R − a) . (42)

One can now substitute ρδ into (23), multiply the equation by R2 and integrate
over the shell, obtaining R2U ′(R)|a+ǫ

a−ǫ = −4πa2ηδU
3(a). If the metric is to remain

unchanged outside of the shell, and the spacetime is to be flat (U = const) in the
inside, letting ǫ → 0, the density of the ECD on the shell is

ηδ = − U ′

+(a)

4πU3
+(a)

, (43)

where U+(a) and U ′

+(a) is the metric as it approaches the shell from the outside,
i.e. the original ERN metric. The δ-shell ECD distribution that produces flat space
inside, and the ERN metric in the outside, is therefore

ρδ(R) =
ma

4π (m + a)3
δ(R − a) . (44)

When the δ-shell is located outside of the region where there originally was a
horizon, i.e. at the harmonic radius R = a > 0 (corresponding to the curvature
radius r = m + a > m), the density of the ECD on the shell (44) is positive. Both
the event horizon, and the central singularity, are removed from the system. The
situation is different if the shell is placed at R = a, −m < a < 0, i.e. in the black-
hole region. Such shell removes the singularity leaving the horizon where it was.
The curvature coordinate r = R + m decreases as one approaches the shell from
the R > a ERN spacetime, it reaches the finite value r = a + m > 0 at the shell,
and starts increasing again as one passes the shell and continues moving through
the flat R < a region. There is no feature in the spacetime to prevent one from
continuing indefinitely. The curvature coordinate r can be interpreted by recalling
that the area of the surface r = const is 4πr2. Therefore the resulting spacetime
can be understood as the ERN metric ‘outside the shell on one side’ and Minkowski
(flat) space ‘outside the shell on the other side’, as if two external solutions were
glued together, one on each side of the shell. An important feature of the ECD
shell placed within the ERN black hole is that the energy density of ECD (44) on
the shell must be negative. The Penrose-Carter diagrams for the ERN spacetime
regularized by the δ-shell placed outside of the event horizon, and by the δ-shell
placed inside the black-hole region, is shown in Fig. 6.

Irrespective of the position of the shell, both the charge integral (28),

Q = 4π

a+ǫ
∫

a−ǫ

ρδ(R)U3 R2 dR = m, (45)
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Fig. 6. Penrose–Carter diagrams of m > 0 ERN spacetime regularized by a spherical
δ-shell of ECD of harmonic radius R = a (curvature radius r = m+a): cases 0 < a
(left) and −m < a < 0 (right). Future and past null-infinities are labeled I+ and
I−, shell is labeled with a. The −m < a < 0 diagram can be continued (tessellated)
in the upward (timelike) direction.

and the mass integral (30),

M = 4π

a+ǫ
∫

a−ǫ

ρδ U2 R2 dR +

∞
∫

a

Φ′2 U2 R2 dR = m, (46)

give the expected results: the relation M = ±Q = m > 0 is thus restored. The
same procedure can be carried out in the case of ERN spacetime with negative
ADM mass (naked singularity). We can shield the singularity with a spherical
shell of ECD. The expression (44) giving the ECD density on a δ-shell located at
R = a > |m| is valid again, and since m < 0, the density of the ECD is negative for
all a > |m|. Once the shell is introduced into the system, the singularity disappears
and M = ±Q = m < 0 holds.

We now proceed to the solutions with the non-zero ECD density and with the
naked singularities considered in Sec. 4. Denote U(R) the solution of (23) for the
ECD density ρ(R) ≥ 0, satisfying the boundary conditions (39) with m0 = 0 and
(38) with m∞ > 0. Let U(R) have one or more nodes, outermost being at R = R0

(this node corresponds to the singularity). Then U(R) also has a maximum at
R = Rm, R0 < Rm < ∞. We now introduce the δ-shell at the harmonic radius
R = R0 + a, a > 0, and require that inside the shell the spacetime becomes flat,
while outside the shell the metric remains unchanged. The metric which provides
regular solutions is

Uδ(R) =

{

U(R0 + a) , R < R0 + a ,
U(R) , R ≥ R0 + a .

(47)

This also means that the ECD must be removed from the inside, while in the
outside it must remain unchanged. The ECD density now including the δ-shell can
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be written as

ρδ(R) = ηδ δ(R − (R0 + a)) + H(R − (R0 + a)) ρ(R) , (48)

where H(x) is the unit step function. Substituting (47) and (48) into (23), and
integrating over the shell, one obtains the density of the ECD on the δ-shell,

ηδ = − U ′(R0 + a)

4π U3(R0 + a)
, (49)

which is negative if the shell is between the node and the maximum of U(R) (where
U ′ > 0), and positive if the shell is outside of the maximum (where U ′ < 0).

The charge integral (28) can now be written as the sum of two terms, the first
being the contribution of the ECD placed on the shell,

4π

R0+a+ǫ
∫

R0+a−ǫ

ηδδ(R − (R0 + a))U3
δ (R)R2 dR , (50)

and the second being the contribution of ECD distributed outside of the shell,

4π

∞
∫

R0+a

ρ(R)U3
δ (R)R2 dR . (51)

Numerical calculations with arbitrarily positioned shells (a > 0) revealed that the
sum of the two terms precisely matches the value of the ADM mass of the configu-
ration. In the limit a → 0, i.e. the shell approaching the singularity, the sum of the
two terms is

Q = −R2
0U

′(R0) + 4π

∞
∫

R0

ρ(R)U3(R)R2 dR . (52)

Analysis of the numerical values of the parameters of the solutions with nodes given
in Table 1 reveals that the relation ±Q = m∞ is restored. In a similar way we tested
the behaviour of the mass integral (30), where the relation M = m∞ was recovered
as well. However, the contribution of the shell to the mass integral diverges as the
shell approaches the singularity, so the relation analogous to (52) cannot be given.

6. Regularization of the solutions II: The thick shell

The spacetime that we have obtained by placing the δ-shell into the ERN black-
hole region deserves some more comments with regard to its two not so ordinary
features: negative ECD density on the shell and the increasing curvature radius r
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on both sides of the shell. Another interesting situation that we encountered is the
need for the negative ECD density in the δ-shell regularizing the solution with non-
negative ECD density and the naked singularity. The δ-shell that we have used in
the preceding section hides its internal structure from us. To visualize the situation
better, we now use thick shells to regularize the solutions.

In the analytic construction of the thick shell in Ref. [19], the metric profile
function U(R) within the shell is a parabola determined by the requirements that
at its outer surface (harmonic radius Ro) it smoothly matches the external ERN
metric, and that at its inner surface (harmonic radius Ri), it smoothly matches
the flat metric, smoothly meaning that U(R) is of the differentiability class C1.
These conditions could be formulated as U ′

sh(Ri) = 0, Ush(Ro) = 1 + m/Ro,
U ′

sh(Ro) = −m/R2
o. The ECD density resulting from such thick shell is, gener-

ally, discontinuous (nonzero) at the surfaces.

We wish to construct the thick shell that will regularize the the ERN black-
hole spacetime, as well as the solutions with non-negative ECD density and the
metric profile function U(R) with nodes (naked singularities), described in Sec. 4,
analogously to the way this was done in the preceding section with the δ-shell.
We also require that the shell does not induce jump discontinuities in the ECD
density, which can be accomplished by requiring that the metric is C2 continuous

across the surfaces. This leads to five conditions: U
(1,2)
sh (Ri) = 0, and U

(0,1,2)
sh (Ro) =

U (0,1,2)(Ro), where U(R) is the original metric profile function to be regularized.
Therefore, sticking to the polynomial model, its degree must be raised to four. The
general analytical expressions for the metric profile function and the ECD density
within such thick shell can be straightforwardly derived, but are quite complicated,
and are therefore not shown.

We start with the ERN black-hole spacetime by placing the thick shell inside
the black-hole region (in harmonic radii, this is the range −m < Ri < Ro < 0,
and in curvature radii this is 0 < ri < ro < m). In Fig. 7, we show (among other
things) the dependence of the curvature radius r on the harmonic radius R which
is in general given by r = U(R)R, Eq. (35). Outside the thick shell on the right
side of the diagram is the ERN spacetime, and r = R+m, while on the left side the
spacetime is flat, U(R) = U0 < 0, and r = U0R. The minimum value of r (throat)
occurs within the shell. The rest-energy density of the ECD, ρ, is negative within
the shell, while the rest-energy density of the electrostatic field (which is equal to
the transverse pressure, and the negative of the radial pressure), is positive. The
total rest-energy density, which is the sum of the two, ρtot = ρ + ptr, is negative at
least close to the inner edge of the shell where all ptr falls off more rapidly than ρ,
so none of the standard energy conditions (Sec. 2) are satisfied in this solution.

In Fig. 8 we show the example where the spacetime with the non-negative ECD
density and with the naked singularity is regularized by the thick shell located in
the region where the acceleration due to gravity is oriented outward. As it can
be seen, the rest-energy density of the ECD in the shell is (mostly) negative, and
as one approaches the internal surface of the shell, it vanishes less rapidly than
the transverse pressure. It follows that none of the standard energy conditions
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are satisfied. The need for the negative ECD density within the shell makes this
regularized configuration similar to the one that we obtained when the thick shell
was placed in the ERN black hole. However, the most important difference in
this case, besides of not involving the event horizon, is that the curvature radius
decreases in the region that is understood as internal flat spacetime.

-1 -0.5 0.5 1
R

-3

-2

-1

1

2
r

U

UΡ

ptr

r
r

U

Fig. 7. The m = 1 ERN black-hole spacetime (dashed lines) regularized by the
thick shell of ECD [19] located in the black-hole region (solid lines): metric (22)
profile function U(R), ECD density ρ, transverse pressure ptr. = Φ′2/8π, curvature
radius r. Harmonic radii of the inner and outer surface of the shell are Ri = −0.6
and Ro = −0.4.
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R
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1
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ptr �Ρ0

U

U
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r

r

Fig. 8. Solution for the density (41) with the metric profile function U(R) with
one node satisfying boundary conditions (38) with m∞ = 1 and (39) with m0 = 0
(dashed lines) regularized with a thick shell of ECD (solid lines): metric profile
function U(R), ECD density ρ, transverse pressure ptr. = Φ′2/8π, curvature radius
r. Harmonic radii of the inner and outer thick shell surfaces are Ri = 1.5 and
Ro = 2.0 are less than the harmonic radius of the maximum of U(R), see also
Table 1.
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7. Discussion and conclusions

In this paper we have shown that in the Majumdar–Papapetrou system (a subset
of the Einstein–Maxwell system covering static configurations of extremally charged
dust, ECD), starting from the prescribed spherically symmetric distribution of ECD
with non-negative rest-energy density, one can obtain solutions with the naked
point singularity and positive ADM mass. In such solutions the radial component
of the metric tensor in harmonic coordinates, gRR = U2(R), has at least one double
zero, i.e. U(R) has a zero crossing. The outermost zero corresponds to the naked
singularity. The regular solutions considered in Ref. [12] show bifurcating behaviour
of the ADM mass with regard to the amount of allocated matter (source strength).
The solutions considered here stem from the same system, but they have only one
branch that in the low source strength limit leads to quasi-black-hole configurations.
We have shown, in two ways, that the naked singularity can be removed by a
modification of the ECD distribution: by introducing either a spherical δ-shell, or a
thick shell of ECD. The external metric and ECD distribution remains unchanged,
while inside the shell the spacetime is flat. We have used before the δ-shells to
obtain basic insight into the structure of the regularized system, and in the similar
context δ-shells were used to regularize the multiple black-hole ERN spacetime in
Ref. [8]. Here however, to investigate the behaviour of the pressures within the
shell, we have used thick shells. If the shell is sufficiently close to the centre of the
system, i.e. in the region where the acceleration of the gravitational force is directed
outward, and the electrical field reverses its direction relative to outer space, the
rest-energy density of the ECD within the shell must be be negative. This is an
expected feature since it has been known for a long time that the requirement that
the charged structure of sufficiently small size has finite mass, within the classical
(Einstein–Maxwell) theory, leads to negative energy density in its inside (see e.g.
Refs. [20, 21]). Roughly speaking, this can be understood by observing that the
energy of the electrostatic field, which contributes to the mass of the configuration,
diverges as the the object shrinks in size. Therefore, if the total mass is to remain
constant, the diverging contribution of the positive electrostatic component must
be compensated by the appropriate amount of negative energy density allocated
within the object. Our solutions can, once regularized by the shell of sufficiently
small radius, be understood as a cloud of ECD with non-negative energy density
surrounding the core object of negative energy density and electrical charge of the
opposite sign. Standard energy conditions are violated within the shell. We have
also shown that the rest-energy density of the regularizing shell placed behind the
event horizon of the ERN black-hole spacetime must be negative.
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REGULARIZACIJA RJEŠENJA ZA RASPODJELE NABIJENE PRAŠINE U
EINSTEIN–MAXWELLOVOJ TEORIJI

Istražujemo regularizaciju rješenja za statičku sferno simetričnu potpuno nabijenu
prašinu u Majumdar-Papapetrouovom sistemu. Rješenja u njihovim koordinatama
pokazuju singularnosti. Te su singularnosti takve naravi da su rješenja fizikalno
neprihvatljiva jer su važne fizičke veličine (metričke invarijante) takod–er singularne.
Ta se rješenja mogu regularizirati jednostavnom promjenom definicije raspodjela
naboja/energije. Našli smo spektar rješenja s nekoliko nul-čvorova u metričkom
tenzoru, i pokazali da se može postići njihova regularizacija bilo s δ sferom, ili s
debelom sfernom raspodjelom tvari. Nestaje grananje regularnih rješenja, ali se za
ukupnu masu pridruženu rješenjima opaža ponašanje slično kvantizaciji.
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