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We present cosmological models with variable cosmological term (Λ) in the context
of higher-dimensional spacetime. It has been observed that in these models particle
horizon exists and the cosmological term is decaying with time. Further, it is shown
that the new models solve entropy problem and generate several models obtained
in four-dimensional spacetime.
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1. Introduction

There have been several attempts to unify gravity with other fundamental forces
in nature. In the last two decades more efforts have been made to study the theo-
ries in which dimensions of spacetime are greater than the (3+1) of the observable
Universe. Chodos and Detweiler [1] have suggested that present four-dimensional
structure of the Universe might have been preceded by a higher-dimensional struc-
ture which at a later stage becomes effectively four-dimensional due to dimensional
reduction process in which 4D spacetime expands while the extra dimensions ei-
ther contract to the unobserved Planckian length scale or remain constant. It has
been suggested by Marciano [2] that the experimental detection of time varia-
tions of fundamental constants should be a strong evidence for the existence of
extra dimensions. Further, developments in super string theory and super gravity
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theory have generated great interest in particle physics and cosmology to study
higher-dimensional theory [3]. The string theory in which the matter fields are con-
fined to a 3-dimensional “brane-world” embeded in 1 + 3 + d dimensions, while the
gravitational field can propagate in d extra dimensions, has inspired researchers
and created great interest in higher-dimensional gravity theories. The brane-world
model, presented by Randall and Sundrum [4], has attracted much attention as
an alternative to the standard four-dimensional cosmology because standard four-
dimensional gravity is recovered on the brane in the low-energy limit [5]. Due to
the possibility of the large extra-dimensions in the brane-world models, the cos-
mological models of the early Universe must be studied with careful consideration
of the effect of the bulk geometry [6]. Recently, Sasaki [7] has presented review
on recent progress in the brane-world cosmology. Very recently, Alam and Sahni
[8] have compared the predictions of brane-world models to two recently released
Supernova data sets: the Gold data [9] and the data from the Supernova Legacy
Survey (SNLS)[10]. They have shown that brane-world models satisfy both sets of
SNe data. In recent years, several authors (Refs. [11 – 13] and references therein)
have studied multidimensional inhomogeneous cosmological models in a different
context.

The cosmological term (Λ) was originally introduced in cosmology by Einstein
in 1917 to obtain a static solution of his field equations. Subsequently, Friedmann
presented expanding solutions to the Einstein equations and cosmological term was
rejected by Einstein in view of Hubble’s discovery in favour of expanding Uni-
verse. However, cosmological term has attracted researchers from time to time
and its cosmological consequences have been studied [14 – 16]. Linde [17] has sug-
gested that cosmological ‘constant’ is a function of temperature and related to the
spontaneous symmetry breaking process, thus it should be a function of time in a
spatially homogeneous expanding Universe as temperature varies with time. The
simplest phenomenological approach to solve this problem is to allow the effec-
tive cosmological term to vary with time, which enables it to relax to its present
value(Λ0 ≤ 10−56 cm−2) in an expanding Universe. In the context of the quantum
field theory a cosmological term corresponds to the energy density of the vacuum.
The inflationary cosmology indicates a large value of the cosmological term at the
early epoch which might have accelerated the expansion of the Universe whereas
current observations suggest much smaller value of the cosmological term at later
epoch and hence it is speculated that the Universe inflates extremely rapidly by
the decaying cosmological ‘constant’ in the period between the baryogenesis and
primordial nucleosynthesis. Presently cosmological ‘constant’ is considered as one
of the most important problems in cosmology as it resolves many outstanding prob-
lems in a natural way. Many aspects of Λ related to the age problem, classification
of models, classical tests, observational constraints, structure formation and grav-
itational lenses were discussed by several authors (Refs. [18 – 23] and references
therein). In the spirit of quantum cosmology, Chen and Wu [18] argued that as Λ
has dimension of inverse length squared, one can express

Λ ∝
1

l2Pl

[

lPl

R

]n

, (h̄ = c = 1) , (1)
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where lPl is the Planck length. Here, the term h̄ does not appear because general
relativity is a classical theory. It is obvious to put n = 2 in the above expression.
The relation Λ ∝ R−2 does not fall in conflict with the high degree of isotropy of the
cosmic background radiation. This ansatz was generalized by Carvalho et al. [19]
by including a term proportional to the Hubble parameter. They have suggested a
decaying Λ of the form

Λ = (n + 1)[αR−2 + βH2] , (2)

where n = 2, and α and β are adjustable dimensionless parameters. The additional
term βH2 can modify some features of cosmological models related to the age and
low energy density problems. For the sake of generality, Waga [20] has presented
following generalized law for Λ

Λ = αR−2 + βH2 + λ . (3)

Here λ is a dimensionless constant. Viana and Liddle [24] have considered the scalar
field perturbation in cosmological models which they suggested as an alternative
to cosmological ‘constant’ models. Recent observations (Perlmutter et al. [25] and
Riess et al. ([9, 26]), strongly support a significant and positive value of Λ. Their
findings arise from the study of more than 50 type Ia supernovae with red-shifts in
the range 0.10 ≤ z ≤ 0.83 and these suggest Friedmann models with negative pres-
sure matter such as a cosmological term, domain walls or cosmic strings (Vilenkin
[27], Garnavich et al. [28]). Sahni [29] reviewed the observational evidences for a
small Λ at the present epoch and suggests that when the high redshift observations
of type Ia supernovae are combined with CMB observations, that strongly supports
a flat Universe with Ωm + ΩΛ ≃ 1. By modifying the Chen and Wu ‘ansatz’, Vish-
wakarma et al. [30] have investigated some cosmological models with Λ which fit
to the angular size red-shift relation data very well and demand cosmic expansion
with a positive decreasing Λ. Diaz-Rivera and Pimentel [31] have made a detailed
study of cosmological models with decaying Λ in scalar tensor theories. Some of
the recent discussions on the cosmological constant “problem” and consequences on
cosmology with a time-varying cosmological constant are contained in Bertolami
[32], Ratra and Peebles [33], Dolgov et al. [34], Sahni and Starobinsky [35], Pad-
manbhan [36] and Pradhan et al. [37]. Motivated by the aforesaid research works,
in the present paper, higher-dimensional cosmological models have been studied
with Λ of the form given in Eq. (2). The cosmological consequences of Λ in the
context of higher dimensions are discussed.

2. Field equations

We consider higher dimensional Friedmann-Robertson-Walker type spacetime
metric [38]

ds2 = dt2 − R2(t)

[

dr2

1 − kr2
+ r2(dx2

n)

]

, (4)
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where

dx2
n = dθ2

1 + sin2 θ1dθ2
2 + ....... + sin2 θ1 sin2 θ2......... sin

2 θn−1dθ2
n ,

R(t) is the scale factor, k = 0,±1 the curvature parameter and D = n+2 the total
number of dimensions.

Einstein field equations with cosmological ’constant’ for perfect fluid distribu-
tion are given by

Rij −
1

2
Rgij = −8πG[(ρ + p)uiuj − pgij ] − Λgij , (5)

where ui stands for (n + 2) fluid velocity in comoving co-ordinates, ρ and p are
the energy density and perfect fluid pressure, respectively. The Einstein’s field
equations (5) for the spacetime metric (4) yield two independent equations

n(n + 1)

2





(

Ṙ

R

)2

+
k

R2



 = 8πGρ + Λ , (6)

n(n + 1)

2

R̈

R
= −4πG

[

(n − 1)ρ + (n + 1)p −
Λ

4πG

]

. (7)

Equations (6) and (7) yield the energy conservation equation

ρ̇ + (n + 1)
(

ρ + p
) Ṙ

R
= −

Λ̇

8πG
. (8)

Introducing the energy density, vacuum, curvature, Hubble and deceleration
parameters

Ωh =
16πGρ

n(n + 1)H2
, ΩhΛ =

2Λ

n(n + 1)H2
,

Ωk =
k

R2H2
, H =

Ṙ

R
, q = −

R̈

RH2
,

Equations (6) and (7) may be written as

1 + Ωk = Ωh + ΩhΛ , (9)

q =
Ωh

2

[

n − 1 + (n + 1)
p

ρ

]

− ΩhΛ , (10)

where the subscript h stands for higher dimensional values of these quantities.
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Eliminating ΩhΛ from Eqs. (9) and (10), and using the equation of state
p = (γ − 1)ρ, we obtain

2

(n + 1)γ

[

1 + q + Ωk

]

= Ωh . (11)

Since Ωh ≥ 0, Eq. (11) indicates 1 + q + Ωk ≥ 0. If we neglect the curvature para-
meter, one can see that the deceleration parameter q always satisfies the condition
q ≥ −1. Assuming Ωh = 0, we can get the de Sitter model. Considering γ = 1 for
matter-dominated present epoch (t = t0, n = 2), we recover the result of Waga [20]

2

3

[

1 + q0 + Ωk0

]

= Ω0 . (12)

The subscript “0” stands for the present value of the parameter.

From Eq. (12), it may be seen that Ω0 < 2
3 requires q0 < 0. The dynamical

estimate suggest Ω0 = 0.2±0.1 and observations do not rule-out the negative value
of q0 [19].

It has been argued [39] that an accelerating scale factor R(t) and entropy pro-
duction are essential conditions for a dynamical solution of the horizon and flatness
problems. To solve the entropy problem, cosmological models of the Universe with
cosmological ‘constant’ have already been presented in the literature (see Ozer and
Taha [40], Salim and Waga [41]).

The usual entropy law in general relativity may be written as

TdS ≡ d(ρV ) + pdV = 0 , (13)

while, in the present case, with the help of Eq. (8), it is modified to

T
dS

dt
= −

1

8πG
δRn+1 dΛ

dt
, (14)

where V = δRn+1 [21]. Equation (14) gives a mathematical relation between en-
tropy production and cosmological term Λ.

A combination of Eqs. (6) and (7) with (2) produces the second-order differential
equation

RR̈ + AṘ2 − B = 0 , (15)

where

A =
γ(n + 1)

2n

[

n − 2β
]

− 1 , (16)

B = k −
γ(n + 1)

2n

[

nk − 2α
]

. (17)
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The first integral of Eq. (15) gives

Ṙ2 = CR−2A +
B

A
(A /=0) , (18)

and

Ṙ2 = C + 2B log R (A = 0) . (19)

Here C is an integration constant.

3. Cosmological models

In this section, different cases are considered to discuss behaviour of cosmological
models.

3.1. Case I (β = n

2
− 2n

(n+1)γ
)

With the assumption β =
n

2
−

2n

(n + 1)γ
, Eq. (16) suggests A = 1 and hence

Eq. (18) reduces to

RṘ = (C + BR2)1/2, (20)

which on integration yields

R(t) = [B(t − t0)
2 + 2(t − t0)H0R

2
0 + R2

0]
1/2. (21)

Equation (21) gives the non-singular expanding model of the Universe. The
model shows that there is a possibility of the Universe passing through a min-
imum at t = t0 − H0R

2
0/B, when B > R2

0H
2
0 . This shows that solutions are

non-singular only for some range of parameters, whereas they are singular when

B =
(2t0H0 − 1)R2

0

t20
. Using Eq. (21), we obtain the expressions for Λ and ρ

Λ =
(n + 1)

R4

[

αR2 + β{B(t − t0) + H0R
2
0}

2
]

, (22)

ρ =
(n + 1)

16πGR4

[

{n − 2β}{B(t − t0) + H0R
2
0}

2 + {nk − 2α}R2
]

. (23)

From Eq. (23), we may see that for β ≤
n

2
and α ≤

nk

2
, the energy density

is always positive. The cosmological term (Λ) and energy density (ρ) are decreas-
ing with evolution of the Universe. It can be easily observed from Eq. (22) that
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the cosmological constant is a decreasing function of time and approaches a small
positive value as time progresses (i.e the present epoch).

With the help of result (22), Eq. (14) produces

T
dS

dt
=

n + 1

4πG
δ{B(t − t0) + H0R

2
0}R

n−3

[

α − Bβ +
2β{B(t − t0) + H0R

2
0}

2

R2

]

.

(24)
This model suggests that entropy problem can be solved for all α ≥ Bβ. When
γ = 4/(n + 1), β vanishes and Λ ∝ R−2 which is the case in Ref. [18] for n = 2.

According to the Gibbs’ integrability condition, one cannot independently spec-
ify an equation of state for the pressure and temperature ([42, 43]). The equation

of state for temperature may be considered as T ∝ e
∫

dp/(ρ(p) + p) which with
the help of equation p = (γ − 1)ρ gives

T = T0ρ
(γ−1)/γ . (25)

From Eqs. (23) and (25), it is clear that temperature of the Universe is decreas-
ing with expansion of the Universe.

3.2. Case II (α = 0)

Considering α = 0, for flat model (k = 0), Eqs. (17) and (18) yield

R(t) = R0

[

γ(n + 1)

2n
{n − 2β}H0(t − t0) + 1

]2n/γ(n+1)(n−2β)

. (26)

This represents a non-singular model of the Universe. Further, using Eq. (26), the
expressions for Λ and ρ in terms of the time co-ordinate t may be obtained as

Λ = (n + 1)βH2
0

(

R0

R

)γ(n+1)(n−2β)/n

, (27)

16πGρ = (n + 1) [n − 2β] H2
0

(

R0

R

)γ(n+1)(n−2β)/n

. (28)

The condition β ≤ n/2 ensures the positivity of the energy density. From Eq. (27),
it is observed that the cosmological constant is a decreasing function of time and
it approaches a small positive value as time progresses (i.e the present epoch).

Again, we can obtain the singular model of the Universe by integrating Eq. (18)
and assuming the initial condition R(0) = 0. In this case we get

R(t) = R0

[

γ(n + 1)

2n
{n − 2β}H0t

]2n/γ(n+1)[n−2β]

. (29)
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Further, assuming t = t0, n = 2 and γ = 1 for the present epoch (matter dominated
Universe), one may get

H0t0 =
2

3(1 − β)
. (30)

This is similar to the result obtained by Freese et al. [44].

From Eqs. (14) and (27), we obtain

T
dS

dt
=

(n + 1)2βγ

8πG
δH3

0

[

1 −
2β

n

](

Ro

R

)3γ(n+1)[n−2β]/2n

R(n+1). (31)

Again, Eq. (31) solves the entropy problem for β ≤ n/2.

3.3. Case III : Radiation dominated phase

The radiation dominated case is relevant during early stages of the Universe
where the extra dimensions might have a significant role to play as all dimensions
including extra dimensions can be treated on the same footing and refer to the
instant before the Universe passes through compactification transition. Using γ = 4

3
for radiation, from Eqs. (16) – (18) and (2) follows

Ṙ2 = C1R
[2n(1−2n)+8(n+1)β]/3n +

[

4(n + 1)α − n(2n − 1)k

n(2n − 1) − 4(n + 1)β

]

, (32)

Λ = (n + 1)βC1R
4(n+1)(2β−n)/3n +

[

n(n + 1)(2n − 1)[α − kβ]

n(2n − 1) − 4(n + 1)β

]

R−2 . (33)

From Eq. (33), it is observed that the cosmological constant is a decreasing
function of time and approaches a small positive value as time progresses (i.e the
present epoch).

Again, by use of Eqs. (32) – (33), one may obtain energy density from Eq. (6)
as

16πGρr

n(n + 1)
= C1

[

1 −
2β

n

]

R4(n+1)(2β−n)/3n +

[

6(α − kβ)

n(2n − 1) − 4(n + 1)β

]

R−2, (34)

16πGρv

n(n + 1)
= βC1R

4(n+1)(2β−n)/3n +

[

n(2n − 1)[α − kβ]

n(2n − 1) − 4(n + 1)β

]

R−2. (35)

It has been assumed that the Universe couples only with the dominant compo-
nent. With n = 2, our models reduces to those obtained by Carvalho et al. [19].
Again, if we take n = 2, β = 0 and C1, α always positive, the cosmological scenario
of [18] can be obtained.
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As it has been mentioned in the Refs. [18] and [19], the constant α plays the
role of the curvature parameter k. We consider

α =
n(2n − 1)

4(n + 1)
k , (36)

then Eq. (32) yields

C1 = H0
2R0

4(n+1)(n−2β)/3n ,

R = R0

[

2(n + 1)(n − 2β)

3n
H0t

]3n/2(n+1)(n−2β)

. (37)

Equation (37) suggests that the age of the Universe can be calculated from

t0 =
3n

2(n + 1)(n − 2β)
H0

−1 (38)

Now, if we consider the flat model (k = 0, i.e. α = 0), then Eqs. (33) – (35) take
the form

Λ = (n + 1)βH0
2

(

R0

R

)[4(n+1)(n−2β)]/3n

, (39)

16πGρr

n(n + 1)
=

(

1 −
2β

n

)

H0
2

(

R0

R

)[4(n+1)(n−2β)]/3n

, (40)

16πGρv

n(n + 1)
= βH0

2

(

R0

R

)[4(n+1)(n−2β)]/3n

. (41)

Further, Eqs. (40) and (41) suggest the relation ρr =

(

1

β
−

2

n

)

ρv.

At this stage one may find a relation connecting the scale factor R(t) and
temperature of radiation as

Trad = T0

(

R0

R

)[(n+1)(n−2β)]/3n

. (42)

Further, by use of Eq. (37), the relation (42) suggests that temperature is decreasing
with evolution of the Universe.
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3.4. Case IV : Matter dominated phase

Now we consider matter-dominated phase to examine cosmological consequences
of dimensionality during cosmic evolution.

Ṙ2 = C2R
[−n(n−1)+2(n+1)β]/n +

[

2(n + 1)α − n(n − 1)k

n(n − 1) − 2(n + 1)β

]

, (43)

Λ = (n + 1)βC2R
(n+1)(2β−n)/n +

[

n(n + 1)(n − 1)(α − βk)

n(n − 1) − 2(n + 1)β

]

R−2, (44)

16πGρm

n(n + 1)
= C2

[

1 −
2β

n

]

R(n+1)(2β−n)/n +

[

4(α − βk)

n(n − 1) − 2(n + 1)β

]

R−2, (45)

16πGρv

n(n + 1)
= βC2R

(n+1)(2β−n)/n +

[

n(n − 1)(α − βk)

n(n − 1) − 2(n + 1)β

]

R−2. (46)

If the constant α is related to the curvature parameter k as

α =
n(n − 1)k

2(n + 1)
, (47)

then Eq. (43) on integration gives

C2 = H0
2R0

(n+1)(n−2β)/n,

R = R0

[

(n + 1)(n − 2β)

2n
H0t

]2n/(n+1)(n−2β)

. (48)

Equation (48) suggests that the time interval t0 elapsed in quasi-FRW stage is

t0 =
2n

(n + 1)(n − 2β)
H0

−1 (49)

Again, considering the flat model(k = 0 i.e. α = 0), Eqs. (44)-(46) take the form

Λ = (n + 1)βH0
2

(

R0

R

)(n+1)(n−2β)/n

, (50)

16πGρm

(n + 1)
=

(

n − 2β

n

)

H0
2

(

R0

R

)(n+1)(n−2β)/n

, (51)

16πGρv

(n + 1)
= βH0

2

(

R0

R

)(n+1)(n−2β)/n

. (52)
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In this case also, we can easily find the relation ρm =
(

1
β − 2

n

)

ρv. From Eqs. (48)

and (50), we observe that the cosmological constant is a decreasing function of time
and approaches a small positive value as time progresses (i.e the present epoch).

4. Conclusions

In this work, we have presented cosmological models with varying Λ in higher
dimensions which yield several four-dimensional results when n = 2. The analytic
expressions of cosmological variables indicate a clear dependence of dynamical prop-
erties on dimensionality of the spacetime. The horizon distance, dH(t) at time t is
the proper distance travelled by light emitted at t = te:

dH(t) = R(t) lim
te→0





t
∫

te

dt′

R(t′)



 . (53)

If the horizon distance is finite throughout, then we can say that the causal commu-
nication between two observers exists. It can be easily seen that horizon distance
is finite in all models. The boundary of horizon is smaller during higher dimen-
sions. The derived models solve the entropy problem. In both cases, the radiation-
dominated phase and the matter-dominated phase, the ratio of the energy density
and cosmological constant depends on the constant β and dimensionality of the
spacetime. This may present a significant problem to structure formation or brane
world cosmology.

The values of the cosmological constant in all models are found to be decreasing
functions of time and they all approach small and positive values which is supported
by the results from recent Ia supernovae observations (Perlmutter et al. [25], Riess
et al. ([9],[26]), Garnavich et al. [28]).
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KOZMOLOŠKI MODELI S PROMJENLJIVIM ČLANOM Λ U
VIŠEDIMENZIJSKOM PROSTORU-VREMENU

Predstavljamo kozmološke modele s promjenljivim kozmološkim članom (Λ) u
okviru vǐsedimenzijskog prostora-vremena. Pokazuje se da u tim modelima pos-
toji čestični horizont i da kozmološki član opada s vremenom. Nadalje, pokazujemo
kako novi modeli rješavaju problem entropije i polazǐsta su vǐse modela u četiri-
dimenzijskom prostoru-vremenu.
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