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In this paper, we present a simple calculation of periastron shift in the orbit of
a test particle in the Kerr field. We differentiate the prograde and retrograde or-
bits by the orbital angular momentum of the test particle. The orbit equations are
then clearly different for the two types of motion. The calculated periastron shift
is larger in a retrograde orbit than in a prograde orbit, a fact confirming previous
results. We compare the difference between periastron shifts in the two types of
motion with the results of Esteban and Diaz who used elliptic integrals to calculate
the shift.
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In an astrophysical binary system, the orbit of a star around a massive central
body is not likely be a simple Keplerian orbit due to general relativistic effects. In
particular, a periastron shift will result in rosetta shaped orbits. Since the mag-
nitude of periastron advance strongly depends on the compactness of the central
body, the detection of such an effect is likely to provide information about the na-
ture of the central body. This could be the case of stars orbiting close to the center
of our Galaxy, where a massive black hole is presumed to reside. This massive body
could be a static Schwarzschild black hole or a stationary Kerr black hole. Other
possibilities are there, too. In any case, the study of periastron shifts in orbits in
various types of gravitational fields has become important.

In a binary system, the periastron shift is due to Newtonian and relativistic
contributions. The Newtonian effects on the periastron shift are well known. A
detailed discussion of this can be found in Ref. [1]. Regarding the relativistic ef-
fects on periastron shift, we know that the dominant contribution was found by
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Einstein [2] in the calculation of Mercury’s perihelion shift. Compact calculation of
Mercury’s perihelion shift can be found in Ref. [3]. Damour and Schafer [4] found
an exact solution useful to calculate, in the test-particle approximation, the rel-
ativistic periastron shift in binaries in which the central body could be a static
black hole. Esteban and Diaz [5] obtained analytical solutions for the relativistic
periastron shift including the spin-orbit interaction. They, therefore, have consid-
ered a binary system composed of a rotating black hole and an orbiting star. They
have used the Kerr metric to model the exterior space-time of the rotating black
hole and assumed test-particle approximation. In two previous articles [6 – 7], we
have calculated the periastron shift in Kerr space-time in the orbit of an effective
particle. Recently, Bini et al. [8] calculated periastron shift in Kerr space-time in
the test-particle approximation.

The purpose of this paper is to clarify the effect of spin-orbit interaction on pe-
riastron shift in prograde and retrograde orbits. The analysis presented by Esteban
and Diaz [5] shows that the spin-orbit interaction diminishes (increases) the value
of periastron shift when the star in the binary system orbits in the same (opposite)
direction as the rotating black hole. The calculation of Bini et al. [8] does not refer
to the senses of the rotations of the bodies in the binary system. Our calculations
in Ref. [6 – 7] agree with the conclusion drawn in Ref. [5], that is, the periastron
shift in prograde orbit is smaller than that in retrograde orbit. In literature, there
are several ways for taking into account the relative senses of rotations of the bod-
ies in a binary system. Let the spin of the central body be denoted by S and the
orbital angular momentum of the orbiter be J . In Ref. [5], the retrograde orbit is
marked by a negative S and the prograde orbit by a positive S. In our calculations
in Ref. [6 – 7], we have marked the prograde orbit by a positive value of S/J and
the retrograde orbit by a negative value of S/J . Signs of the product SJ are also in
use for this purpose [2]. One may thus be confused with the results. In the present
paper, we shall present a straightforward calculation to support the conclusion of
our previous result [6 – 7] and that of Esteban and Diaz [5].

Let us consider a rotating black hole of mass M around which a star (considered
as a test particle) of mass m is moving. Let spherical polar coordinates, r, θ, ϕ,
centered on the black hole, be used to describe the location of the particle, with
the hole’s spin, S, along the polar axis. The Lagrangian for the motion of the
particle is given [9 – 10], to linear order in S but otherwise in solely Newtonian
theory, by

L =
m

2

(

ṙ2 + r2θ̇2 + r2 sin2(θ) ϕ̇2
)

+
GmM

r
−

2GmS sin2 θ

c2r
ϕ̇ , (1)

where an over dot represents differentiation with respect to time. To leading order
in S and in M/r, the motion resulting from this Lagrangian is the same as in the
Kerr metric. Note, however, that this Lagrangian ignores M/r corrections that
are present in the Schwarzschild space-time. In particular, if we set S = 0 in
Eq. (1), the remaining Lagrangian is Newtonian and hence, will not give rise to
the periastron shift that results in Schwarzschild field. We shall come to this point
again shortly. Now, we restrict our consideration to motion in the equatorial plane.

100 FIZIKA B (Zagreb) 15 (2006) 3, 99–106



faruque and huda: periastron shift in the orbit of a particle orbiting a . . .

The Lagrangian (1) then reduces to

L =
m

2

(

ṙ2 + r2ϕ̇2
)

+
GmM

r
−

2GmS

c2r
ϕ̇ . (2)

There are two constants of motion [9]

E =
m

2

(

ṙ2 + r2ϕ̇2
)

−
GmM

r
, (3)

J = mr2ϕ̇ −
2GmS

c2r
, (4)

where E is the energy of the test particle, and J is the z-component (component
along the spin axis of the hole) of orbital momentum. We now differentiate the
two cases of orbital angular momentum: J as given by Eq. (4) corresponds to
the prograde orbit, and J as given by the negative of the expression in Eq. (4)
corresponds to the retrograde orbit. Hence, we have

J = mr2ϕ̇ −
2GmS

c2r
, prograde orbit, (5)

J =
2GmS

c2r
− mr2ϕ̇ , retrograde orbit, (6)

where both of J ’s are positive in magnitude. Now, the Euler-Lagrange equation
associated with r reads

d

dt

∂L

∂ṙ
−

∂L

∂r
= 0 , (7)

and we obtain, substituting L from Eq. (2) into Eq. (7),

m
(

r̈ − rϕ̇2
)

= −
GmM

r2
+

2GmS

c2r2
ϕ̇ , (8)

which is valid for both retrograde and prograde motion. Next, we solve Eq. (5) and
Eq. (6) for ϕ̇ and substitute those in Eq. (8) to obtain differential equations for
retrograde and prograde motions

r̈ −
J2

m2r3
= −

GM

r2
+

6GJS

mc2r4
, prograde orbit, (9)

r̈ −
J2

m2r3
= −

GM

r2
−

6GJS

mc2r4
, retrograde orbit, (10)
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where we have neglected terms proportional to S2. Following the standard proce-
dure, we now use the variable u = 1/r, and take ϕ as the independent variable. We
obtain for both retrograde and prograde motion

r̈ ∼= −
J2

m2
u2

d2u

dϕ2
, (11)

where we have used the criterion,
2GSm

c2Jr
≪ 1, which we assume valid for orbits far

from the central body. Using (11) in Eqs. (9) and (10), we get the familiar type of
orbit equations. However, the resulting equations do not contain the familiar term
3GM

c2
u2 responsible for periastron shift in Schwarzschild field. Note that in the

Schwarzschild field, we have the orbit equation [11]

d2u

dϕ2
+ u =

Gm2M

J2
+

3GM

c2
u2. (12)

However, Eqs.(9) and (10) do not give rise to the 2nd term on the right hand side
of Eq. (12). This happens due to the Newtonian form of the Lagrangian (2) once
S = 0 is used. Since our intention is to obtain the correct periastron shift, we put
this term in the orbit equation. Therefore, we get

d2u

dϕ2
+ u =

Gm2M

J2
+

3GM

c2
u2 −

6GmS

Jc2
u2 , prograde orbit, (13)

d2u

dϕ2
+ u =

Gm2M

J2
+

3GM

c2
u2 +

6GmS

Jc2
u2 , retrograde orbit, (14)

Using the specific spin of the hole given by a = S/Mc, and putting J2/(Gm2M) = p
(the semi-letus rectum of the orbit), we obtain

d2u

dϕ2
+ u −

1

p
=

3GM

c2

(

1 −
2amc

J

)

u2 , prograde orbit, (15)

d2u

dϕ2
+ u −

1

p
=

3GM

c2

(

1 +
2amc

J

)

u2 , retrograde orbit. (16)

Solution to Eqs. (15) and (16) can be found using the standard procedure [12], and
the subsequent periastron shift can be found. We obtain

δϕ ∼=
6πGM

c2p

(

1 −
2amc

J

)

, prograde orbit, (17)

δϕ ∼=
6πGM

c2p

(

1 +
2amc

J

)

, retrograde orbit, (18)
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Now, J = m
√

GMd(1 − e2) and p = d(1 − e2). Substituting these values into
Eqs. (17) and (18), we finally obtain

δϕ ∼=
6πGM

c2d(1 − e2)
−

12πa
√

GM

cd3/2(1 − e2)3/2
, prograde orbit, (19)

δϕ ∼=
6πGM

c2d(1 − e2)
+

12πa
√

GM

cd3/2(1 − e2)3/2
, retrograde orbit, (20)

The first term on the right hand sides of Eqs. (19) and (20) is the familiar perias-
tron shift originating from Schwarzschild gravitoelectric field. The second term is
the lowest-order contribution from spin-orbit interaction (gravitomagnetic contri-
bution). The total shift is larger in the retrograde orbit than that in the prograde
orbit. The contribution from spin-orbit interaction is equal in magnitude but oppo-
site in sign in the two types of motion. Moreover, this gravitomagnetic contribution
is very close in magnitude to that in our previous calculations for effective particle
[6 – 7]. Moreover, we get results close to those obtained by Bini et al. [8]; the differ-
ence lies in the factor 12, which in Ref. [8] is 16. To compare our results with those
of Esteban and Diaz [5], we calculate the differences of periastron shifts between
the two types of motion using semi-major axis and eccentricity values of Mercury’s
orbit around the Sun and use mass values from 1 solar mass to 106 solar masses.
The results of our calculation are shown in Table 1 and those of Esteban and Diaz
[5] are shown in Table 2.

Table 1. For the given values of a/M , this table shows the differences between the
periastron shifts in retrograde and prograde orbits according to Eqs. (19) and (20).
The orbital parameters are assumed to be the same as those of Mercury (orbit
around Sun, semi-major axis =0.3871 AU, eccentricity = 0.2056). M⊙ is the solar
mass. Numbers in a column should be multiplied by the power of 10 above it.

Mass of the central object

1 M⊙ 10 M⊙ 102 M⊙ 103 M⊙ 104 M⊙ 105 M⊙ 106 M⊙

a

M (×10−11) (×10−9) (×10−8) (×10−6) (×10−5) (×10−3) (×10−2)

1 32.726 10.349 32.726 10.349 32.726 10.349 32.726

4/5 26.181 8.2793 26.181 8.2793 26.181 8.2793 26.181

3/5 19.636 6.2095 19.636 6.2095 19.636 6.2095 19.636

2/5 13.090 4.1396 13.090 4.1396 13.090 4.1396 13.090

1/5 6.5453 2.0698 6.5453 2.0698 6.5453 2.0698 6.5453
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Table 2. Results of Esteban and Diaz [5].

Mass of the central object

1 M⊙ 10 M⊙ 102 M⊙ 103 M⊙ 104 M⊙ 105 M⊙ 106 M⊙

a

M (×10−11) (×10−9) (×10−8) (×10−6) (×10−5) (×10−3) (×10−2)

1 21.793 6.89 21.75 6.895 21.852 7.0624 28.4397

4/5 17.44 5.51 17.37 5.516 17.482 5.6499 22.7122

3/5 13.08 4.13 12.99 4.137 13.112 4.2374 17.0111

2/5 8.72 2.75 8.72 2.758 8.741 2.8249 11.3298

1/5 4.36 1.45 4.36 1.379 4.37 1.4125 5.6617

We see that our values are larger by about 50% than those of Ref. [5] for smaller
masses, but our values are very close to those of Ref. [5] for 106 solar masses. If
the formula of Bini et al. [8] is used, the values will be more than those of ours
by about 25% (i.e., 75% larger than those of Ref. [5]). So, we conclude that the
approximate formulae (19) and (20) give periastron shifts for equatorial prograde
and retrograde orbits that are appropriate for compact central bodies of masses
≥ 106 solar masses.

We now summarize: We have employed Euler-Lagrange equation, using the
Lagrangian given in Refs. [9 – 10] that is appropriate for motion in Kerr space-time,
to calculate the lowest-order periastron shifts in prograde and retrograde equatorial
orbits of a test particle orbiting a Kerr black hole. We have cast the orbital angular
momentum of the orbiting particle in two distinct forms, one algebraically opposite
to the other, to differentiate orbit equations for prograde and retrograde orbits.
The periastron shift in retrograde orbit is found to be increased by the spin-orbit
interaction over the gravitoelectric contribution. In prograde orbit, the shift is
lowered by the spin-orbit interaction. These facts are in agreement with previous
results of Esteban and Diaz [5] and of ours [6 – 7]. The work in this article clarifies
the matter of sign of the contribution of spin-orbit interaction in the periastron
shift in equatorial orbits of a particle orbiting a Kerr black hole. The formulae we
obtain, Eqs. (19) and (20), give periastron shifts for prograde and retrograde orbits
of a test body orbiting a spinning central compact star or a blak hole of mass ≥ 106

solar masses.
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POMAK PERIASTRONA STAZE ČESTICE KOJA KRUŽI OKO KERROVE
CRNE RUPE

Predstavljamo jednostavan račun pomaka periastrona staze čestice u Kerrovom
polju. Razlikujemo istosmjerno i protusmjerno kruženje prema impulsnom mo-
mentu čestice. Na taj se način jednadžbe staze jasno razlikuju za te načine kruženja.
Izračunat pomak periastrona veći je za protusmjerno nego za istosmjerno kruženje,
što potvrd–uje ranije račune. Uspored–ujemo razlike pomaka periastrona za ta dva
načina kruženja s rezultatima Estebana i Diaza koji su primijenili eliptičke integrale
za računanje pomaka.
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