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1. Introduction

One of the effective models in describing hadron properties is the linear sigma
model which has been suggested earlier by Gell-Mann and Levy [1] to describe
nucleons interacting via sigma (σ) and pion (π) exchanges. Some of the conse-
quences of this model, however, are not supported by observations. Notably, the
isoscalar pion–nucleon (πN) scattering length predicted by the model is larger than
the experimental value by an order of magnitude (see, e.g. Refs. [2] and [3]). Many
solutions for this model have already been suggested. Birse and Banerjee [2] con-
structed equations of motion treating both the σ- and π-fields as time-independent
classical fields and quarks in the hedgehog spinor state. Birse [3] generalized this
mean-field model to include angular momentum and isospin projection. Goeke et
al. [4] investigated hadron properties in a chiral model for the nucleon based on
the linear sigma model with scalar-isoscalar and scalar-isovector mesons coupled
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to quarks, using the coherent pair approximation. Their results for σ(πN) differ
considerably from the experimental data. That work has been reexamined by Aly
et al. [5].

Recently, the mesons were found to play a very important role in improv-
ing the nucleon properties in chiral quark models. Horvat et al. [6] applied the
Tamm-Dancof method which extended the sigma model to include nine scalar and
nine pseudoscalar degrees of freedom, to reproduce the nucleon magnetic moments.
On the other hand, Rashdan et al. [7] also investigated the effect of higher-order
mesonic interactions in the sigma model to improve nucleon properties. Sahu et al.
[8] considered the effect of higher-order mesonic interactions in the sigma model
to obtain better description of nuclear matter. In the same direction, Broniowski
and Golli [9] added a new term to the Langrangian of the type of the linear sigma
model to investigate the dynamical consequences of this term and its relevance to
the phenomenology of the soliton models of the nucleon.

The present work aims to demonstrate the importance of mesonic correlations
of higher order. The order is taken to be higher than other soliton models adopted
in the previous works [2 – 5].

This paper is organized as follows. A brief review of the linear sigma model
with higher-order mesonic interactions is given in Sec. 2. Numerical calculations
and discussion are presented in Sec. 3.

2. Chiral quark-sigma model with higher-order mesonic
interactions

2.1. The linear sigma model

In this subsection, we summarize the original sigma model of Gell-Mann and
Levy [1] and Birse and Banerjee [2].

The Lagrangian density of the linear sigma model, which describes the interac-
tions between quarks via the σ- and �π-mesons is written as [2]

L(r) = iΨγμ∂μΨ +
1
2
(∂μσ∂μσ + ∂μ�π · ∂μ�π) + gΨ(σ + iγ5�τ · �π)Ψ − U1(σ, �π) , (1)

where

U1(σ, �π) =
λ2

4
(σ2 + �π2 − ν2)2 + m2

πfπσ (2)

is the meson–meson interaction potential, and Ψ, σ and �π are the quark, sigma
and pion fields, respectively. In the mean-field approximation, the meson fields are
treated as time-independent classical fields. This means that we are replacing power
and products of the meson fields by corresponding powers and products of their
expectation values. The meson–meson interactions in Eq. (2) lead to the hidden
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chiral SU(2) × SU(2) symmetry with σ(r) taking on the expectation value

〈σ〉 = −fπ , (3)

where fπ = 93 MeV is the pion decay constant. The last term in Eq. (2) is included
to break the chiral symmetry. It leads to partial conservation of axial-vector isospin
current (PCAC). The parameters λ2 and ν2 can be derived in terms of fπ and the
masses of σ- and �π-mesons. One expands the vacuum expectation values, which
minimize the potential, about the σ = −fπ, �π = 0,

ν2 = f2
π − m2

π

λ2
, (4)

and

λ2 =
m2

σ − m2
π

2f2
π

. (5)

For details, see Ref. [2].

2.2. Higher-order mesonic interactions

The extended linear sigma model is described in details in Ref. [7]. In the
following, we give a brief summary of a new version of the meson–meson interaction.
We assume the following form of the mesonic potential

Un(σ, π) =
1
4

(
λ

a2n−2

)2 (
σ2 + �π2 − ν2

)2n
+ m2

πfπσ , (6)

where a is a scale parameter taken to be 1 MeV. It is evident that this potential
is also chiral symmetric. For n = 1, we get the original potential U1(σ, �π) defined
by Eq. (2). Here we consider the case n = 2 [7, 8]. We are going to use an effective
model, approximating the underlying quark theory; the model need not and should
not be renormalizable [7 – 9]. Applying the PCAC and taking λ/a2 = λ1, we get

ν2 = f2
π −

(
m2

π

2λ2
1

)1/3

, (7)

and

λ2
1 =

(m2
σ − m2

π)3

27(2mπ)4f6
π

. (8)

Now, we expand the extremum with the shifted field defined as

σ = σ′ − fπ . (9)
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Substituting Eq. (9) into Eq. (1) and using Eq. (6), we get

L(r) = iΨγμ∂μΨ+
1
2
(∂μσ′∂μσ′+∂μ�π·∂μ�π)−gΨfπΨ+gΨσ′Ψ+igΨγ5�τ ·�πΨ−U2(σ′, �π) ,

(10)
where

U2(σ′, �π) =
λ2

1

4
(
(σ′ − fπ)2 + �π2 − ν2

)4
+ m2

πfπσ′ − m2
πf2

π . (10)

The time-independent fields σ′ and π(r) are to satisfy the Euler-Lagrangian
equation, and the quark wave function satisfies the Dirac eigenvalue equation. The
mesonic fields are written as

� σ′ = gΨΨ − 2λ2
1(σ

′ − fπ)
(
(σ′ − fπ)2 + �π2 − ν2

)3 − m2
πfπ , (12)

��π = igΨγ5 · �τΨ − 2λ2
1�π

(
(σ′ − fπ)2 + �π2 − ν2

)3
, (13)

where �τ refers to Pauli isospin matrices and γ5 =
( 0 1

1 0

)
. We used the the

hedgehog Ansatz [2],
�π(r) = r̂π(r) . (14)

The Dirac equation for the quarks is

du

dr
= −p(r)u + (E − mq + S(r))w , (15)

where S(r) = g〈σ′〉, P (r) = 〈�π, r̂〉 and E are the scalar potential, pseudoscalar
potential and the eigenvalue of the quarks spinor Ψ, respectively, and

dw

dr
= −(E − mq + S(r))u +

(
2
r
− p(r)

)
w . (16)

Including the colour degrees of freedom, one has gΨΨ → NcΨΨ, where N = 3
colours and g is the coupling constant. The Dirac wave functions Ψ and Ψ are
given by

Ψ(r) =
1√
4π

[
u(r)
iw(r)

]
Ψ =

1√
4π

[
u(r) iw(r)

]
, (17)

and the sigma, pion and vector densities are given by

ρs = NcgΨΨ =
3g

4π
(u2 − w2) , (18)

ρp = iNcgΨγ5�τΨ =
3g

4π
(−2uw) , (19)
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ρv =
3g

4π
(u2 + w2) . (20)

These equations are subject to the boundary conditions which require that the
fields asymptotically approach their vacuum values,

σ(r) ∼ −fπ and π(r) ∼ 0 at r → ∞ . (21)

3. Numerical calculations

We have solved the field equations (15) and (16) using the fourth-order Runge-
Kutta method. Due to the nonlinearity of the equations, it is necessary to iterate
the solution until self-consistency is achieved. To start this iteration process, we
used the chiral circle form for the meson fields,

S(r) = mq(1 − cos θ) , (22)

P (r) = −mq sin θ , (23)

where
θ = π tanh r . (24)

The mean fields mediate an instantaneous interaction among the quarks. The meson
mean fields [2] don’t carry momentum, angular momentum, charge, or isospin, since
the operator corresponding to these observables depends on the time derivatives of
the meson fields. However, there are other operators which do receive contributions
from the mean fields. These include the magnetic moment, σ(π, N) given by

σ(π, N) = 4πfπm2
π

∞∫
0

dr r2(σ(r) − fπ), (25)

For a review of this quantity, see Ref. [5].

4. Results

The field equations (12) to (16) have been solved by the iteration method as in
Refs. [2] and [7] for different values of the quark and sigma masses. Tables 1, 2 and
3 show the nucleon observables for mq = 400, 500 and 600 MeV, respectively. The
sigma mass was assumed mσ ≥ 700 MeV. As seen from these tables, a stronger
mesonic interaction significantly modified the nucleon observables. In the linear
sigma model of Gell-Mann and Levy [1] and Birse and Banerjee [2], the quark and
sigma masses were taken 500 MeV and 1200 MeV, respectively, that are larger
than what is commonly used [10 – 12]. This is due to the fact that in Ref. [2]

FIZIKA B (Zagreb) 16 (2007) 1, 59–66 63



abu-shady et al.: Nπ scattering and electromagnetic corrections in the . . .

the bound solutions have only been obtained for 3.9 < g < 4.55 and a lower
order of the mesonic interaction (it was taken in the lowest order, n = 1). By
taking the higher order (n = 2), this problem was removed. So we obtain good
results for more reasonable values for the quark and sigma masses, mq = 400 – 600
MeV and mσ ≥ 700 MeV, which are consistent with several soliton models. Good
results are obtained for mq = 400 MeV and mσ = 1370 MeV, as seen in Table 4,
where the nucleon observables are better reproduced than by Birse and Banerjee
[2] who used mesonic potential of the order n = 1 (see Eq. (6)). In particular, we
obtain reasonable values for σ(π, N). It is a very attractive feature of our model in
comparison with the results of Refs. [2], [5] and [7] (see Table 4).

TABLE 1. Values of magnetic moments of the nucleons (in nuclear magnetons) and
σ(π, N) (in MeV) for mq = 400 MeV.

mσ (MeV) 700 900 1100 1300 1370 Exptl. [3]

Sigma term σ(πN) 132 106 93 82 51 35± 10

μproton 2.653 2.711 2.74 2.771 2.776 2.79

μneutron –1.959 –2.064 –2.12 –2.164 –2.172 -1.91

TABLE 2. Values of magnetic moments of the nucleons (in nuclear magnetons) and
σ(π, N) (in MeV) for mq = 500 MeV.

mσ (MeV) 700 900 1100 1300 1370 Exptl. [3]

Sigma term σ(πN) 144 122 108 94 68 35± 10

μproton 2.854 2.867 2.874 2.877 2.876 2.79

μneutron –2.188 –2.234 –2.266 –2.287 –2.290 -1.91

TABLE 3. Values of magnetic moments of the nucleons (in nuclear magnetons) and
σ(π, N) (in MeV) for mq = 600 MeV.

mσ (MeV) 700 900 1100 1300 1370 Exptl. [3]

Sigma term σ(πN) 133 124 114 104 76 35± 10

μproton 2.964 2.942 2.930 2.924 2.921 2.79

μneutron –2.344 –2.334 –2.341 –2.351 –2.353 -1.91
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TABLE 4. Values of magnetic moments of the nucleons (in nuclear magnetons) and
σ(π, N) (in MeV), calculated by Birse and Banerjee ([2]), T. S. T. Aly ([5]) and
Rashdan et al. ([7]), compared with our calculations (for mq = 400 MeV)

Quantity [2] [5] [7] Present work Exptl. [3]

σ(πN) 92.5 88.9 88 51 35± 10

μproton 2.76 1.71 2.797 2.776 2.79

μneutron –2.06 –1.31 –2.06 –2.172 -1.91

5. Conclusion

The present calculation show the importance of mesonic correlations which may
be of the higher order than what is normally used in most soliton models. The
breaking of the chiral symmetry is verified, so the model has shifted from the chiral
limit.
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Nπ RASPRŠENJE I ELEKTROMAGNETSKE POPRAVKE U PROŠIRENOM
LINEARNOM SIGMA MODELU

Proučavamo nedavne analize raspršenja pion–nukleon i magnetske momente nuk-
leona u proširenom linearnom sigma modelu. Jednadžbe polja riješili smo u pri-
bliženju srednjeg polja. Postigli smo bolji sklad s eksperimentalnim podacima nego
raniji radovi.
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