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We discuss Higgs gauge symmetry breaking and mass stability, Brans-Dicke scalar
gravity, dark energy and dark matter within the framework of non-minimal cou-
pling, where the observable cosmological constant was shown to be the sum of the
vacuum (Λvac) and the induced term Λind = −3m2/4 with m being the ultra-light
mass (≈ the Hubble parameter) implemented in the theory from supergravities ar-
guments. We show that the dynamical Higgs mass and the generated electron mass
are geometrical, depending on Λvac and m, on condition that the scalar curvature
and the non-minimal coupling parameter are of opposite signs. In order to take into
account the dark matter and dark energy, we have generalized the theory by adding
a decreasing exponential complex potential to the Higgs-like complex scalar one.
We show that the whole clusters, galaxies physical scenarios and boson stars may
depend also on the sign of the scalar curvature and on the non-minimal coupling
constant.
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1. Introduction

It is well-known that the universe is accelerating with time, spatially approach-
ing de-Sitter regime and is filled with strange dark matter and dark energy re-
sponsible of its accelerated expansion. From the theoretical point of view, one can
interpret the dark energy either by vacuum energy (cosmological constant), or by
weakly interacting massive particles (WIMPs), or as a slowly-varying scalar field
energy. Of course, some other alternative theories have been suggested to explain
the cosmological observations and their corresponding problems, in particular the
cosmological constant problem, the dark matter and the rotating spiral galaxies
problem (string cosmology, network of topological defects, extra-dimensions, brane
world, extended supergravity models, quintessence scalar fields, complex scalar
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field, dark fluid, etc) [1 – 7]. All these phenomenological and conceptual models and
problems need, in fact, to be further clarified. From the observational point of view,
there is no direct evidence for their existence causing some kind of difficulties to
actual dark cosmological models. In recent years, a lot of articles have been devoted
to the investigation of the cosmological models with the non-minimal coupling be-
tween gravity and inflaton complex scalar field and to their important connection
with inflationary cosmology. We have shown that in the case of non-minimal cou-
pling between the scalar curvature and the density of the complex scalar field such
as L = −(ξ/2)

√−g Rφφ∗ (R is the scalar curvature or the Ricci scalar) and for
a particular scalar complex potential field V (φφ∗) = (3m2/4)(ωφ2φ∗2 − 1) (ω is
a tiny parameter), inspired from supergravity inflation theories, ultra-light masses
m are implemented naturally in the Einstein field equations (EFE), leading to a
cosmological constant Λ in accord with observations and contributing to the dark
energy problem [8]. The metric tensor of the spacetime is treated as a background
and the Ricci scalar in the non-minimal coupling term, regarded as an external
parameter, was found to be R = 4Λ − 3m2 = 4Λ̄ where Λ̄ = Λ − (3m2/4) is the
effective cosmological constant. That is to say, there is another induced contribu-
tion to the vacuum cosmological constant with Λinduced = −(3m2/4). These tiny
ultra-light masses have the desirable feature for the description of the accelerated
universe and contribute to the dark energy and matter problem. They occur in
supergravity quintessence model with the de-Sitter minimum and have important
additional features in astrophysics, cosmology, the early universe and the standard
electroweak model [9, 10]. It is worth-mentioning that within the framework of clas-
sical general relativity, the presence of a positive cosmological constant implies the
existence of a minimal mass and of a minimal density in nature [11]. Adopting this
result, we explore some of the consequences concerning the presence of these ultra-
light bosons in the field equations. Ignoring all gauge coupling, the Klein-Gordon
equation (KGE) with no mass term associated with this choice reads

�φ − R

6
φ − ∂V

∂φ∗
= 0 . (1)

In fact, a possible mass term for the scalar field and the cosmological constant
are embodied in our quartic complex potential V (φφ∗) and our scalar curvature
R = 4Λ − 3m2. By substituting into Eq. (1), we obtain

�φ − M2φ = 0 , (2)

where M2 = M̃2 + 2hφφ∗, M̃2 = 2Λ/3 − m2/2 = ξR and h = 3ωm2/4 > 0. From
Eqs. (1) and (2), if we treat the Ricci scalar as a parameter, the potential takes the

following form Ṽ (φφ∗) = (2Λ− (3m2/2))ξφφ∗ +(h/2)(φφ∗)2. If we assume that the
Higgs’s complex scalar is chargeless, then the Higgs scalar can only be interpreted
as gravitational. Such a coupling could play a major role in gravitational interaction
transfer [12]. For the particular case 4Λ = 9m2 and ω = 0, we have R = 6m2 > 0,
and as a result we can obtain (� − R/6)φ = 0. The Higgs field is then supplanted
by a massless KGE conformally coupled to the scalar curvature with a tiny real
rest mass. Consequently, for h = Λ = 0, the effective cosmological constant is
negative, spontaneous symmetry breaking (SSB) still occurs and is controlled by
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the presence of the term m2. For a homogeneous isotropic curvature Ricci positive
scalar, that is 4Λ < 3m2, there exists a non-trivial minimum distributed on the
circle |φ| =

√
−ξR/(2h) := v

√
2 and we have a gauge SSB. In other words, the

presence of ultra-light particles is responsible for inducing the SSB provided that
4Λ < 3m2. A very small cosmological constant is, therefore, equivalent to the
almost flatness of the cosmological spacetime and consequently the SSB do not
need to be altered.

In order to see how the model accommodates dark energy, instead of complex
scalar field, we use alternative field variables by assuming ϕ(x) = φ(x) exp(iθ(x))
and more precisely ϕ(t) = φ(t) exp(iθ(t)). We write the Higgs potential in our
theory on its usual form as V (ϕ) = (1/2)µ2ϕ2 + (λ/4)ϕ4, where µ2 = (4Λ− 3m2)ξ
and λ = 3ωm2/2 > 0 and we refer to the flat FRW universe strongly favoured
by cosmological observations and where, from the theoretical point of view, the
inflaton is distributed homogeneously. In addition, we assumed that it is free of
matter. Remember that recent observations suggest that up to 90% of our observed
universe is empty. The resulting, pressure and density for the inflaton scalar field
are [13 – 16]

p=
1

2
ϕ̇2− 1

2
(4Λ−3m2)ξϕ2− 3

8
ωm2ϕ4−ξ

[
4Hϕϕ̇+2ϕ̇2+2ϕϕ̈+(2Ḣ+3H2)ϕ2

]
(3)

ρ =
1

2
ϕ̇2 + 3ξHϕ(Hϕ + 2ϕ̇) +

1

2
(4Λ − 3m2)ξϕ2 +

3

8
ωm2ϕ4 (4)

where κ is the gravitational constant and H = ȧ/a is the Hubble parameter, a(t)
being the scale factor. Clearly, the presence of an effective cosmological constant
κeff = κ(1 − κξϕ2) and the critical values of the scalar field ϕc = ±(κξ)−1/2 for
ξ > 0. The ultra-light field is usually known as a high-energy field not related to
the Standard Model, i.e., ϕ ≈ Mα where Mα is some high energy scale around the
Planck mass [17]. The effective state equation of the model at one of the following
critical values ϕ = ±ϕc will take the following form w(t) ≈ −4 (1 + ∆) / (1 + 4∆),
∆ = ξ(4Λ − 3m2)/

(
3ωm2ϕ2

c

)
≡ ϕ̃2/ϕ2

c where ϕ̃2 = ξ(4Λ − 3m2)/(3ωm2) and
H ≪ 1. For a positive (negative) coupling parameter and a positive (negative)
scalar curvature, assuming ∆ ≫ 1 (for ω ≪ 1) yields w ≈ −1 (vacuum energy)
and superacceleration always occurs. While for ∆ ≪ 1 (R ≈ 0 or ξ ≪ 1) w ≈ −4
(phantom field), corresponding to a superluminal case. This shows briefly some of
the contributions of the ultra-light masses to the dark-energy problem. If the ultra-
light mass field is time-dependent, it will help us certainly to understand more
about the cosmological-constant problem as well as the coincidence problem, and,
maybe, about neutrino condensation [18].

2. Symmetry and generalized Brans-Dicke gravity

In fact, the two fundamental paradigms of modern physics are the Big Bang
cosmology and the standard SU(3)C ⊗ SU(2)L ⊗ U(1)Y model of the strong and
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electroweak interactions. Two key ingredients were recently added: old and new
inflation on the cosmological side and axion as a pseudo Goldstone boson associated
with the spontaneous breakdown of the Peccei-Quinn symmetry in particle physics.
Inflation requires the existence of dark matter, and axions have long been candi-
dates for the cold dark matter, even though there is no physical reason why the
two notions should be related at all [19]. In fact, cosmology with ultra-light pseudo-
Nambu-Goldstone bosons was explored in the literature. It was suggested that with
global SSB scale of about 1018 GeV and explicit breaking scale to be in a mass range
whose upper bound is of about 10−3eV, the field acquires a mass of the order of
the Hubble parameter, dominating the energy density of the present Universe [20].
Moreover, it was recently argued that one of the theoretical approaches to solve the
gauge hierarchy problem is a gravity-gauge-Higgs unification scenario in which the
Higgs is identified as extra-dimensional components of the metric tensor field [20].
In reality, we still ignore where does this come from. A phenomenological explana-
tion was proposed in the framework of inflation-axion scenario which concerns an
unusual realization of the Higgs mechanism which converts the latent energy of the
vacuum into mass or pseudo-Goldstone bosons [19]. It is worth-mentioning that
gravity or gravitational fields may be considered as the Goldstone realization of
a spontaneously broken diffeomorphism group in which Goldstone coordinates are
considered as a dynamical fluid of reference [21]. A Higgs mechanism for gravity,
in which an affine spacetime evolves into a Riemannian one by the condensation
of a metric, has been recently constructed. The symmetry-breaking potential in
Kirsch approach is identical to that of hybrid inflation, but with the non-inflaton
scalar extended to a symmetric second-rank tensor required for the realization of
the metric as a Higgs field. The introduction of a scalar Higgs potential and the
SSB leads to a non-vanishing value of the vacuum energy which can be interpreted
as a direct contribution to the cosmological constant in the Einstein-Hilbert action
for the gravitational field.

In return to our scenario, the scalar field is complex (to ensure that the total
charge of the field is conserved) and the scalar potential is connected to the scalar
curvature and the non-minimal coupling; it will be of interest to study its role in al-
ternative generalized gravity theories, in particular generalized Brans-Dicke gravity.
It was argued more recently that a Brans-Dicke Lagrangian can be embedded in the
flat spacetime electroweak theory. In other words, the Weinberg-Salam Lagrangian
may be converted to a locally conformally flat spacetime into a generally covariant
Lagrangian. The modulus of the Higgs field becomes the Brans-Dicke scalar field,
the Higgs mass converts into a background scalar Ricci curvature, a gauge invariant
vector field can acquire a mass even in the absence of SSB. Near the BPS limit, the
cosmological constant of the embedded gravity can be very small and the Planck
mass can be very large [22].

We expect naturally the appearance of electromagnetic components, in partic-
ular the electron charge in the theory described. Assuming for simplicity a U (1)
symmetry and the required special Higgs gauge transformation

φ̃(x) → φ̃′(x) = η(x) + v/
√

2,
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Aµ → Bµ = Aµ + e−1∇µζ(x),

Dµ = ∇µ + ieAµ → D′

µ = ∇µ + ieBµ,

where φ̃(x) is the scalar field associated to the standard model, the action of the
theory writes as [12].

S=
1

16π

∫
d4x

√−g

[
w∇µ

(
η+

√
−ξ(4Λ−3m2)

2h

)
∇µ

(
η+

√
−ξ(4Λ−3m2)

2h

)
+2η2ξ(4Λ−3m2)

−2
√

−2ξ(4Λ − 3m2)λ η3 − λη4 + we2BµBµ

(
η +

√
−2ξ

h
(4Λ − 3m2)

)
η

−w
ξ(4Λ − 3m2)

2h
e2BµBµ +

ξ2(4Λ − 3m2)2

4λ

]
+

∫
d4x

√−g Lmatter . (5)

The dynamical mass of the gravitational Higgs scalar field η is therefore

mη =

√
ξ(3m2 − 4Λ)

w
, (6)

related to the cosmological constant, the ultra-light masses, the non-minimal cou-
pling constant ξ and the Brans-Dicke parameter w, with 3m2 > 4Λ. Assuming that
the fermions couple to gravity via the standard Higgs-lepton coupling (HLC)

Ge ·
[
eRφ+

(
νe

e

)

L

+
(

ν̄e ē
)
L

φeR

]
, (7)

the SSB requires the following electron mass

me = Ge

√
ξ(3m2 − 4Λ)

2h
(8)

or in the following square form

m2
e =

3ξm2G2
e

2h
−4ξΛG2

e

2h
≡ (m2

eff−m2
Λ)G2

e = m2
effG2

e

(
1− 4Λ

3m2

)
≡ M2

eff

(
1− 4Λ

3m2

)
,

(9)
where m2

eff = 3ξm2G2
e/2h is the HLC effective ultra-light mass, m2

Λ ≡ 2ξΛG2
e/h is

the HLC effective vacuum energy mass and M2
eff ≡ m2

effG2
e, whereas the effective

modified cosmological constant is given by

Λeff =
ξ2(3m2 − 4Λ)2

64λπ
. (10)
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Therefore, the electron mass depends also on the ultra-light masses and the cos-
mological constant and the scalar curvature. One may then suggest that a small
cosmological constant may be generated by ordinary electromagnetic vacuum en-
ergy and, consequently, this could have important consequences on dark energy and
dark matter in the Universe [23] and in high energy physics [24]. In other words,
the electron mass is a geometrical mass and could not stable in an evolving Uni-
verse. If SSB occurs at cosmological levels, some additional terms can be naturally
introduced into the theory. In addition, SSB leads of the scalar field non-minimally
coupled to gravity and generates a massive gauge boson with ultra-light mass with
a critical temperature far above the Universe temperature [10]. If these particles
were proved to condensate into a degenerate Bose-Einstein gas (BEG), then we
have a possible candidate to the missing dark matter [25]. After relaxation of the
symmetry breaking, the BEG can become not only ultra-light but relativistic. For
Λ = 0, (me/m) ∝ Ge and this is an interesting result. If in contrast m2 = 0, one
needs to have Λ < 0 for positive ξ, or Λ > 0 for negative ξ. The SSB occurs for
negative curvature scalar or depends on the sign of the cosmological constant and
the non-minimal coupling constant in case the ultra-light masses are zero. In other
words, both the Higgs mass and the electron mass depend on the spacetime geom-
etry. For a time-decaying cosmological constant or ultra-light masses, we find also
a time-decaying electron mass and the whole standard particle theory is unstable.
In most of the models described in the literature Λ,m2 ∝ t−2, where t is the time
scale [26 – 39]. Mass stability may occur then if we assume the conjecture G2

eΛ and
G2

em
2 are constants. This time of increasing of Ge may be interpreted as due to

a beautiful physical balance between expansion and gravity. That is, since gravity
increases, expansion must accelerates in time. A variable Newton coupling constant
is widely discussed in literature [40]. Within the framework of inflation cosmology,
the time-dependence of the gravitational constant causes the effective cosmological
constant in the de Sitter phase to decrease with time. This in the long run causes
the expansion rate of the universe to drop below the rate of formation of true
vacuum bubbles, allowing the phase transition from SSB to complete itself. This
success obviously provides good motivation for more detailed studies of aspects of
BD-Higgs theories of gravity.

In this way, the Higgs mechanism can be considered as time-independent and
consequently stable in time. The complex potential was shown to have important
features and implications in the physics of the early universe, gravitation and the
spontaneous symmetry breaking, but does not take into account of the dark matter
and energy problem [10]. A previous study has shown that, in order to take into
account the dark matter (as a possible explanation of the additional attractive
gravitational effects in galaxies and clusters) and the dark energy (as a possible
explanation of the repulsive effect at large cosmological scales), one needs to add a
decreasing exponential potential to the quadratic one [3]. Being interested at first in
clusters with typical density around 10−25 kgm−3, we may generalize our complex
scalar potential to the following form

V (φ̃φ̃∗) =

(
2Λ − 3m2

2

)
ξφ̃φ̃∗ +

(
h

2

)
(φ̃φ̃∗)2 + α exp(−βφ̃φ̃∗) (11)
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α and β may be chosen adequately so that the quadratic term is dominant until a
late time of the structure formation, and the third exponential part of the potential
becomes non-negligible only later leading to a quintessence behavior [3]. Thus we

let φ∗(x, t) = (σ(r)/
√

2) exp(−iωt), that is, we assume that the complex potential
has a conserved charge. At large cluster scale, the potential reads

V (σ) = α − 1

2
m2

effσ2 +
h

4
σ4 ≡ h

4
(σ2 − v2)2 (12)

where
m2

eff =

(
3m2ξ

2
− 2Λξ

)
≡ m′2 − m2 (13)

with m2 = 2Λξ and 2m′2 = 3m2ξ. V (σ) has a minimum at σ = ±v and a maximum
at σ = 0 with curvature V ′′ = −m2

eff . The major difference between our approach
and those present in the literature is that the effective mass depends on the cosmo-
logical constant, the ultra-light masses and the coupling constant. Comparing with
Arbey’s approach, α = 9m4ξ2/8h and β = 4h/(3m2ξ) depends on the ultra-light
masses rather than on the cosmological constant [3]. The KGE associated with a
static and isotropic spherical symmetric metric

dτ2 = e2u(r)dt2 − e2v(r)(dr2 + r2dθ2 + r2 sin2 θdϕ2) (14)

gives the effective density of the scalar field as

ρeff =

(
2ω2 − 2Λξ +

3m2ξ

2

)
σ2 − h

4
σ4 − α . (15)

On the boundaries on which the gravitational potential is

Φ0 =
1

2

(
1 − (4Λ − 3m2)ξ

2ω2

)
, (16)

the scalar potential is in a Bose condensate state. As Φ0 is too small, 2ω2 ≈
(4Λ − 3m2)ξ which is positive as long as 4Λ ≷ 3m2 and ξ ≷ 0. Far away from the
center of the clusters, the effective density behaves as ρeff ≈ −9m4ξ2/4h, which is
proportional to Λ, yielding a repulsing behaviour outside clusters as long as Λ > 0.
At galactic scale, one can neglect h and the potential reads [5]

V (σ) =
1

2

(
2Λ − 3m2

2

)
ξσ2 + α exp

(
−βσ2

2

)
. (17)

The Klein-Gordon and Einstein equations give

ρeff ≈ V

(
2Λ − 3m2

2

)
ξσ2 , (18)

which is positive as long as 4Λ ≷ 3m2 and ξ ≷ 0. The size and the density of
the halos are fixed by the value of ω ≈

(
[2Λ − (3m2/ξ)1/2]

)
. In time-decreasing

cosmological constant models, where Λ and m2 tend to zero at late times, ω → 0
and the whole scenario changes, and some effects occur inside a specific galaxy
unless the coupling constant increases with time with the same rate.
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3. Boson stars with Higgs-gauge symmetry

Having addressed the BD gravity with generalized complex scalar potential (11)
in this paper, it will be of interest to explore finally the boson stars composed of
bosons condensed into their ground state [41] which in fact may exist in nature [42]
and may contribute to the dark matter problem [43]. For non-interacting massive
scalar field, Colpi et al. find the mass of the boson star in the Schwarzschild metric
to be of the order of M ≈ M2

P /m, where m is the mass of the scalar field and MP is
the Planck’s mass. Despite this interesting result, this mass does not contribute to
the dark matter problem, e.g., for m ≈ 1000 MeV, M ≈ 10−19M⊙, where M⊙ is one
solar mass. For self-interacting complex scalar field, the authors find M ≈ M3

P /m2,
e.g., for m ≈ mproton, M ≈ M⊙ and such mass may contribute to the dark matter
problem [44]. Our aim now is to re-analyze the work done by Gunderson and Jensen
in the context of BD gravity theory with complex scalar field assumed to be related
to the standard model with complex scalar potential

V (φ̃φ̃∗) =

(
2Λ − 3m2

2

)
ξ̃φ̃φ̃∗ +

(
h

2

)
(φ̃φ̃∗)2. (19)

ξ̃ is a new parameter in the theory. The action of the theory looks like

S =
1

16π

∫
d4x

√−g

(
−φBDR − wgµν ∂µφBD∂νφBD

φBD

)
(20)

+

∫
d4x

√−g

(
−1

2
gµν∂µφ∗

BD∂νφBD − V (φ̃φ̃∗)

)
,

and the corresponding equations of motion are

Gµν =
8π

φBD
Tµν+

w

φ2
BD

(
∂µφBD∂νφBD− 1

2
gµν∂λφBD∂λφBD

)
+

1

φBD
(φBD;µ;ν−gµν�φBD)

(21)

�φBD =
8π

2w + 3
T , (22)

where T = gµνTµν and

Tµν =
1

2
∂µφ̃∗∂ν φ̃ + ∂µφ̃∂ν φ̃∗ − 1

2
gµν(gρη∂ρφ̃

∗∂ηφ̃ + V (φ̃φ̃∗)) (23)

We adapt the well-known Schwarzschild metric

dτ2 =

(
1 − 2M̄(r)

r

)
dt2 −

(
1 − 2M̄(r)

r

)
−1dr2 − (r2dθ2 + r2 sin2 θ dφ2) , (24)

M̄(r) is the amount of the star’s mass within the radius r, and demanding a spher-

ically symmetric matter field φ̃ having the form φ̃(r, t) = ϕ̃(r) exp(−iωGt), where
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ωG is the ground state boson’s energy. Following the arguments of Gunderson and
Jensen by finding the equations of motion or the boson star and imposing on the
system realistic boundary conditions, we find

Mmax ≈ 0.087h1/2 M3
P

(4Λ − 3m2)ξ̃
≡ 0.087h1/2 M3

P

ξ̃R
. (25)

This mass is positive for R > 0 and ξ̃ > 0, or R < 0 and ξ̃ < 0. For R = 0,
Mmax ≫ 1 and for R ≪ 1, Mmax ≪ 1. For m ≈ 0,

Mmax ≈ 0.02h1/2 M3
P

ξ̃Λ
, (26)

and thus depends on the tiny cosmological constant and may contribute to the
dark matter problem. Assuming again U (1) symmetry and the previous Higgs
gauge transformation, we may write Eq. (25) using Eq. (8) as follows

∣∣MGe
max

∣∣ ≈ 0.0435h−1/2G2
e

M3
P

m2
e

, (27)

which is of interest as it represents the maximum mass associated to the electron
mass, and using equation (6),

∣∣MGH
max

∣∣ ≈ 0.087h1/2 M3
P

wm2
GH

, (28)

which is the maximum mass associated to the Higgs mass, and which tends to zero
for w → ∞, unless w = ζh1/2, where ζ is a real parameter, that is

∣∣MGH
max

∣∣ ≈ 0.087
M3

P

ζm2
GH

, (29)

of the order of the Chandrasekhar mass if ζ ≈ 0.04. In Eq. (29), mGH is the
gravitational Higgs mass associated to the theory. In this special case, for the large
coupling effect h1/2/ ≫ 1 and tiny BD parameter w ≪ 1, the maximum mass may
contribute to the dark matter problem through SSB. An important contribution
may occur for weak coupling effect h1/2 ≪ 1 and big BD parameter w ≫ 1. This is
to say that tiny massive bosons stars could have formed in the early universe even in
the presence of strong coupling effect and fairly large BD parameter. Moreover, from
Eq. (27), a star may be composed of both fermions and bosons without interactions
[45]. For w = 6, ∣∣MGH

max

∣∣ ≈ 0.0145h1/2 M3
P

m2
GH

, (30)

less than the one derived by Gunderson and Jensen, and for w = 500 as derived
from the current observation [46]

∣∣MGH
max

∣∣ ≈ 1.74 × 10−4h1/2 M3
P

m2
GH

, (31)
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which may contribute to the dark matter problem for the strong coupling effect.
Note that the maximum mass of the bosons star may increase in time if the cos-
mological constant decreases like Λ ∝ t−2 and thus we may have important con-
tributions to the dark matter problem. In the so-called hyperextended models of
inflation [47], the BD parameter may vary in time. From current observations, one
might expect, since the Universe expands, that w was lower in the past and thus
increases in time. As a result from Eq. (28), in order that the maximum mass con-
tributes to the dark matter problem dominated by the strong coupling effect, m2

GH

must decreases in time in a way the the product wm2
GH ∝ const. It is interesting

to have a decaying Higgs-gravity mass with the cosmological time in the Standard
Model [48]. One should also mention that as a result, all the other parameters, e.g.,
Yukawa couplings, vacuum expectation value of the Higgs field may have a time
dependence.

4. Conclusions

As a generalization of BD gravity with complex scalar field, we showed that the
dynamical Higgs mass and the generated electron mass are geometrical, depending
on Λvac and m on condition that the scalar curvature and the non-minimal coupling
parameter are of opposite signs. It has been found that dark matter could take the
form of the ultra-light masses whose effective Compton wavelength is of the same
order as of the galaxy core. Smaller scale structure arises due to the fact that dark
matter cannot be concentrated on smaller scales. It is very difficult to understand
the ultra-light masses in particle physics and, certainly, this is one of the major
problems underlying the quintessence models. The whole model described in this
letter is simplistic. It is natural to couple the complex scalar field to the fields of
the standard model which will lead to new interaction via a fifth forth type and
would be another source of time variation for the parameters of the Standard Model
[49]. We have also shown that it is possible for bosons stars to contribute to the
dark matter problem even for weak coupling effect but large BD parameter. The
complex scalar field and its associated geometrical Higgs complex scalar potential
could thus have impact on the standard cosmology and the particle physics and be
at the origin of a time variations of the couplings and masses of the standard models
(big bang and electroweak Standard Model). Further details and consequences are
in progress.
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GEOMETRIJSKA HIGGSOVA MASA I BOZONSKE ZVIJEZDE IZ
KOMPLEKSNOG POLJA BRANS-DICKEOVE GRAVITACIJE

Raspravljamo lomljenje Higgsove mjerne simetrije i stabilnost mase, Brans-
Dickeovu skalarnu gravitaciju, tamnu energiju i materiju, u okviru neminimalnog
vezanja, gdje je pokazano da je kozmološka konstanta zbroj vakuumskog (Λvac)
i induciranog člana Λind = −3m2/4, gdje je m ultra lagana masa (≈ Hubbleov
parametar), ugrad–ena u teoriju na osnovi super-gravitacije. Pokazujemo da su di-
namička Higgsova masa i generirana elektronska masa geometrijske, i ovise o Λvac i
m, uz uvjet da su skalarna zakrivljenost i neminimalni parametar vezanja suprotnog
predznaka. Radi uključivanja tamne energije i tamne mase, poopćili smo teoriju
uvod–enjem opadajućeg eksponencijalnog kompleksnog potencijala Higgsovom kom-
pleksnom skalarnom potencijalu. Pokazujemo da cijele nakupine, fizički scenariji
galaksija i bozonske zvijezde možda ovise o predznaku skalarne zakrivljenosti i o
neminimalnoj konstanti vezanja.
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