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A new class of Bianchi type I viscous-fluid cosmological models with a variable
cosmological constant are investigated in which the expansion is considered only
in two directions, i.e. one of the Hubble parameter (H1 = A4/A) is zero. We have
considered four cases: (i) coefficients of bulk (ξ) and shear (η) viscosity are taken
as constant, (ii) ξ and η are considered to be inversely dependent on time, (iii)
Λ is taken as inverse square of t and (iv) ξ and η are considered as proportional
to scale of expansion in the model. The cosmological constant Λ is found to be
positive and is a decreasing function of time which is supported by results from
recent supernovae Ia observations. Some physical and geometric properties of the
models are also discussed.
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1. Introduction

In general relativity, the cosmological constant Λ may be regarded as a measure
of the energy density of the vacuum, and can in principle lead to the avoidance
of the big-bang singularity which is characteristic of other Friedmann-Robertson-
Walker (FRW) models. However, the rather simplistic properties of the vacuum
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that follow from the usual form of Einstein’s equations can be made more realistic
if that theory is extended, which in general leads to a variable Λ. Models with a dy-
namic cosmological term Λ(t) are becoming popular as they solve the cosmological
constant problem in a natural way. There are significant observational evidence for
the detection of the Einstein’s cosmological constant Λ or a component of material
content of the universe that varies slowly with time and space to act like Λ. Recent
cosmological observations by High-Z Supernova Team and Supernova Cosmological
Project (Garnavich et al. [1], Perlmutter et al. [2] Riess et al. [3], Schmidt et al.
[4]) suggest the existence of a positive cosmological constant Λ with the magnitude
Λ/(Gh̄/c3) ≈ 10−123. These observations on the magnitude and red-shift of type Ia
supernovae suggest that our universe may be an accelerating function of the cosmo-
logical density in the form of the cosmological Λ-term. Earlier studies on this topic
are contained in the work of Zeldovich [5], Weinberg [6], Dolgov [7], Bertolami [8],
Ratra and Peebles [9], Carroll, Press and Turner [10]. Some of the recent discus-
sions on the cosmological constant “problem” and consequences on cosmology with
a time-varying cosmological constant have been discussed by Dolgov [11], Tsagas
and Maartens [12], Sahni and Starobinsky [13], Peebles [14], Padmanabhan [15],
Vishwakarma [16], Saha [17], Saha and Shikin [18] and Pradhan et al. [19]. This
motivated us to study the cosmological models in which Λ varies with time.

The distribution of matter can be satisfactorily described by a perfect fluid due
to the large scale distribution of galaxies in our universe. However, the observed
physical phenomena, such as the large entropy per baryon and the remarkable de-
gree of isotropy of the cosmic microwave background radiation, suggest the analysis
of dissipative effects in cosmology. Furthermore, there are several processes which
are expected to give rise to viscous effects. These are the decoupling of neutrinos
during the radiation era and the decoupling of radiation and matter during the
recombination era. Bulk viscosity is associated with the GUT phase transition and
string creation. Misner [20] has studied the effect of viscosity on the evolution of
cosmological models. The role of viscosity in cosmology has been investigated by
Weinberg [21]. Nightingale [22], Heller and Klimek [23] have obtained a viscous uni-
verses without the initial singularity. The model studied by Murphy [24] possessed
an interesting feature in which big-bang type of singularity of infinite space-time
curvature does not appear to be a finite past. However, the relationship assumed by
Murphy between the viscosity coefficient and the matter density is not acceptable at
large density. Roy and Prakash [25] have investigated plane-symmetric cosmological
models representing a viscous fluid with free gravitational field of non-degenerate
Petrov type I in which coefficient of shear viscosity is constant. Bali and Jain [26]
have obtained some expanding and shearing viscous fluid cosmological models in
which coefficient of shear viscosity is proportional to the rate of expansion in the
model and the free gravitational field is Petrov type D and non-degenerate. The
effect of bulk viscosity on the cosmological evolution has been investigated by a
number of authors in the framework of general theory of relativity (Padmanabhan
and Chitre [27], Johri and Sudarshan [28], Maartens [29], Zimdahl [30], Pradhan
et al. [31], Kalyani and Singh [32], Singh et al. [33], Pradhan et al. [34], Saha [35],
Saha and Rikhvitsky [36]). This motivated the study of cosmological bulk viscous
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fluid model.

In general relativity, spatially homogeneous space-times either belong to Bianchi
type or to Kantowaski-Sachs models and interpreted as cosmological models [37].
The current astronomical observations are consistent with an isotropic universe.
Spatially homogeneous and isotropic universes can be well described by Friedmann-
Robertson-Walker (FRW) models [38, 39]. However, the FRW model has the dis-
advantage of being unstable near the singularity [40] and it fails to describe the
early universe. Anisotropic cosmological models play an important role in the un-
derstanding of the universe on the galactic scale. Therefore spatially homogeneous
and anisotropic Bianchi type-I models are undertaken to understand the universe
at its early stage of evolution.

Recently Pradhan and Pandey [41] have obtained some Bianchi type I viscous
fluid cosmological models with a variable cosmological constant. Bali and Jain [42]
have investigated Bianchi type I viscous fluid cosmological models. We have revis-
ited both above solutions. Here we wish to approach this subject from a different
prospective, and present a new class of exact solutions wherein Λ can change in
a manner that is in agreement with observations. We shall focus on the problem
with varying cosmological constant in the presence of bulk and shear viscous fluid
in an expanding universe. The plan of the paper is as follows. The metric and the
field equations are presented in Section 2. In Section 3, we deal with the solution
of the field equations in the presence of viscous fluid. In Section 3.1, we consider
the coefficient of bulk viscosity (ξ) and shear viscosity (η) as constant, whereas in
Section 3.2, ξ and η are taken as inversely proportional to the time t. In Section 3.3,
we deal the problem by considering Λ as to be proportional to the inverse square of
time. In Section 3.4, we consider ξ and η as proportional to the scale of expansion
in the model. In Section 4, we have given the concluding remarks.

2. The metric and field equations

We consider the Bianchi type I metric in the form

ds2 = −dt2 + dx2 + B2dy2 + C2dz2, (1)

where B and C are functions of t alone. This metric depicts the case when one of
the Hubble parameters (here H1 = A4/A) is zero, i. e. the expansion is only in two
directions. The kinematic parameters are then related as θ = −3σ1

1 . This condition
leads to the metric (1).

The Einstein’s field equations (in gravitational units c = 1, G = 1) read

Rj
i −

1

2
Rgj

i + Λgj
i = −8πT j

i , (2)

where Rj
i is the Ricci tensor, R = gijRij is the Ricci scalar, and T j

i is the stress
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energy-tensor in the presence of bulk stress, given by Landau and Lifshitz [43]

T j
i = (ρ + p)viv

j + pgj
i − η

(

vj
i; + vj

;i + vjvlvi;l + viv
lvj

;l

)

−

(

ξ −
2

3
η

)

θ(gj
i + viv

j). (3)

Here ρ, p, η and ξ are the energy density, isotropic pressure, coefficient of shear vis-
cosity and bulk viscous coefficient, respectively, and vi is the flow vector satisfying
the relations

gijv
ivj = −1. (4)

The semicolon (; ) indicates covariant differentiation. We choose the coordinates to
be comoving, so that

v1 = 0 = v2 = v3, v4 = 1. (5)

The Einstein’s field equations (2) for the line element (1) has been set up as

−8π

[

p −

(

ξ −
2

3
η

)

θ

]

=
B44

B
+

C44

C
+

B4C4

BC
+ Λ, (6)

−8π

[

p − 2η
B4

B
−

(

ξ −
2

3
η

)

θ

]

=
C44

C
+ Λ, (7)

−8π

[

p − 2η
C4

C
−

(

ξ −
2

3
η

)

θ

]

=
B44

B
+ Λ, (8)

8πρ =
B4C4

BC
+ Λ, (9)

where the suffix 4 at the symbols A and B denotes ordinary differentiation with
respect to t and θ is the scalar of expansion given by

θ = vi
;i. (10)

3. Solution of the field equations

We have revisited the solutions obtained by Bali and Jain [42] and Pradhan and
Pandey [41] and have obtained a new class of solutions. Equations (6) – (9) are four
independent equations in seven unknowns B, C, ρ, p, η, ξ and Λ. For the complete
determinacy of the system, we need three extra conditions. The research on exact
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solutions is based on some physically reasonable restrictions used to simplify the
Einstein equations. From Eqs. (6) – (8), we obtain

B44

B
+

B4C4

BC
= −16πη

B4

B
, (11)

and
B44

B
−

C44

C
= −16πη

(

B4

B
−

C4

C

)

. (12)

Integrating Eqs. (11) and (12), we obtain

B4C = α e−16π
∫

ηdt, (13)

and

B4C − C4B = k e−16π
∫

ηdt, (14)

respectively. Here α and k are integrating constants.

From Eqs. (13) and (14), we get

B(1−k/α) = C, (15)

which proves that the relation between B and C is independent of the physical
conditions. Putting the value of C from Eq. (15) in (13) and then by integrating
the result, leads to

B =
[

k2{α

∫

( e−16π
∫

ηdt)dt + k1}
]1/k2

, (16)

where k2 = 2 − k
α and k1 is an integration constant.

From Eqs. (15) and (16), we obtain

C =
[

k2{α

∫

( e−16π
∫

ηdt)dt + k1}
](k2−1)/k2

. (17)

Subtracting (8) from (6) gives

16πη
C4

C
=

C44

C
+

B4C4

BC
. (18)

From Eqs. (17) and (18), we obtain

32πη(k2 − 1)
B4

B
= 0. (19)
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Here we have three choices, i.e., either η = 0 or B4 = 0 or k2 − 1 = 0. We observe
that the first two choices do not give physically relevant models of the universe, so
we do not consider these cases. Now we have only the third choice, i.e., k2 − 1 = 0.
Substituting k2 = 1 in Eqs. (16) and (17), we obtain

B = α

∫

( e−16π
∫

ηdt)dt + k1, (20)

C = 1. (21)

For the above values of B and C, Eqs. (6) – (9) reduce to only two independent
equations given by

8π
[

p −

(

ξ −
2

3
η

)

θ
]

= 16πη
α e−16π

∫

ηdt

[

α
∫

( e−16π
∫

ηdt)dt + k1

] − Λ, (22)

and

8πρ = Λ. (23)

In this case the scalar of expansion θ is obtained as

θ =
α e−16π

∫

ηdt

[

α
∫

( e−16π
∫

ηdt)dt + k1

] . (24)

Eqs. (22) and (24) lead to

p =

(

ξ +
4

3
η

)

θ −
Λ

8π
. (25)

Therefore, we have to construct our cosmological models according to Eqs. (23),
(24) and (25).

Here we consider four cases. Here we consider four cases. It is remarkable to
mention here that we consider specific assumptions on the values of parameters η
and ξ in each of the following models I – IV. These assumptions lead to analytically
solvable models.

3.1. Models I

Let us consider that η = η0 and ξ = ξ0, where η0 and ξ0 are constants.

This implies that
∫

ηdt = η0t + η′, where η′ is an integrating constant. Since η′

is ineffective, so we take η′ = 0. Hence we obtain

∫

ηdt = η0t. (26)
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Using Eqs. (24) and (26) in (25), we obtain

p =

(

ξ +
4

3
η

)

[ α e−16πη0t

− (α/(16πη0)) e−16πη0t + k1

]

−
Λ

8π
. (27)

In order to completely determine the system, we choose a barotropic equation of
state

p = γρ, 0 ≤ γ ≤ 1. (28)

Equations (23) and (28) lead to

p =
γΛ

8π
. (29)

Eliminating p between Eqs. (27) and (29), we have

Λ =
128π2η0

(

ξ0 + 4
3η0

)

(1 + γ)

α

[k1 e16πη0t − α]
. (30)

From Eq. (30), we observe that for k1 > α, the cosmological term Λ will be positive
at all times. It is also observed that the cosmological constant is a decaying function
of time and it approaches a small value at late time (i.e., the present epoch). This
is in agreement with the recent results from supernovae Ia observations (Garnavich
et al. [1], Perlmutter et al. [2], Riess et al. [3], Schmidt et al. [4]) predicting a
bound on the contribution of the vacuum energy to the total energy density of the
universe. Thus, with our approach, we obtain a physically relevant decay law for
the cosmological term unlike other investigations where ad hoc laws were used to
arrive at a mathematical expression for the decaying vacuum energy. From Eqs.
(28) and (29), we also see that ρ and p are always positive. Moreover, as t → ∞,
all the physical quantities Λ, ρ, p vanish. The model represents an expanding ,
shearing but non-rotating universe in general. The model explodes with a big bang
at t = 0 and the expansion in the model stops at t = ∞. When α = 0 then θ = 0,
which implies that η = 0. Therefore, viscosity is due to the expansion in the model.

3.2. Models II

In general, η and ξ are not constant throughout the fluid, so that η and ξ can
not be taken always constant, specially when the universe is expanding. Since, in
general, η and ξ depend on temperature (T ) and pressure (p), it is reasonable to
consider

η =
1

η0 + t
and ξ =

1

ξ0 + t
,

because in expansion, temperature and pressure decrease as time increases.

In this case, the values of the physical quantities p, ρ, Λ and θ are obtained as

p =

(

1

t + ξ0
+

4

3

1

t + η0

)

α

(t + η0)[α ln (t + η0) + k0]
, (31)
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ρ =
α

(1 + γ)

(7t + 4ξ0 + 3η0)

(t + ξ0)(t + η0)2[α ln (t + η0) + k0]
, (32)

Λ =
8πα

(1 + γ)

(7t + 4ξ0 + 3η0)

(t + ξ0)(t + η0)2[α ln (t + η0) + k0]
, (33)

θ =
α

(t + η0)[α ln (t + η0) + k0]
. (34)

From Eqs. (31), (32) and (33), we observe that ρ > 0, p > 0, Λ > 0 for all times.
We also observe that when t → ∞, ρ, p and Λ becomes zero. So this fits the best
with the physical conditions.

We also conclude the following:

(i) η and ξ tend to zero when the cosmos expands to its ultimate scale (i.e.,
t → ∞).

(ii) η and ξ have the maximum values when the cosmos has been at its most
condensed stages.

(iii) ρ and Λ also have their maximum values at t = 0.

From Eq. (33), we again notice that the cosmological constant is a decreasing
function of time. This is in agreement with the recent results from supernovae Ia,
as discussed in the previous section.

3.3. Models III

In this case, Λ has been taken as the inverse square of time, i.e., we consider

Λ =
1

t2 + Λ0
, (35)

where Λ0 is an arbitrary constant. Using Eq. (35) in Eqs. (23) and (25), we obtain

ρ =
1

8π(t2 + Λ0)
, (36)

p =
α(7t + 4ξ0 + 3η0)

(t + ξ0)(t + η0)2[α ln (t + η0) + k0]
−

1

8π(t2 + Λ0)
. (37)

From Eq. (36), we observe that ρ > 0 at all times.

From Eq. (37), we obtain when t = 0

p =
α(4ξ0 + 3η0)

ξ2
0η2

0(α ln η0 + k0)
−

1

8πΛ0
. (38)

We shall discuss the problem in the following ways:
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(i) if

α(4ξ0 + 3η0)

ξ2
0η2

0(α ln η0 + k0)
<

1

8πΛ0
,

then we observe p < 0 for all times.

(ii) if

α(4ξ0 + 3η0)

ξ2
0η2

0(α ln η0 + k0)
>

1

8πΛ0
,

then this implies that although p > 0 at t = 0 but it will not remain so for all
times, and as t increases, pressure will have negative values. This is because of the
fact that the first term in the left hand side in relation (ii) decreases much faster
than the second term as t increases. Although, the pressure becomes negative, it
tends to zero ultimately as t → ∞ which is physically acceptable.

3.4. Models IV

In this case, we consider η = η0θ and ξ = ξ0θ, where η0 and ξ0 are constants.

Putting these values in Eqs. (24) and (25), we obtain

θ =
1

(1 + 16πη0)t + δ
, (39)

p =
(ξ0 + η0)

[(1 + 16πη0)t + δ]2
−

1

8πΛ
, (40)

where δ is an integrating constant.

For complete a determinacy of the system. let us consider

Λ =
1

(t + Λ0)2
, (41)

where Λ0 is an arbitrary constant.

Using Eq. (41) in Eqs. (23) and (40) leads to

ρ =
1

8π(t + Λ)2
, (42)

p =
(ξ0 + η0)

[(1 + 16πη0)t + δ]2
−

1

8π(t + Λ0)2
. (43)

From Eq. (42), we observe that ρ is always positive, whereas from Eq. (43), we see
that p > 0 for all times when

δ − Λ0

√

8π(ξ0 + η0)
√

8π(ξ0 + η0) − (16πη0 + 1)
> 0.
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4. Conclusions

A new class of Bianchi type I anisotropic cosmological models with a viscous
fluid as the source of matter and with a time-dependent cosmological term are
obtained. Generally, the models are expanding, shearing and non-rotating. These
models are new and different from those models obtained by Pradhan and Pandey
[41] and Bali and Jain [26] in which free gravitational field was assumed to be
Petrov type D and non-degenerate of Marder [44].

The cosmological term in all models given in Sections 3.1, 3.2, 3.3 and 3.4 are
found to be a decreasing function of time and they all approach a small positive
value as the time increases (i.e., the present epoch). The values of cosmological
“constant” for these models are found to be small and positive what is supported
by the results from recent supernovae Ia observations recently obtained by the
High-Z Supernova Team and Supernova Cosmological Project (Garnavich et al. [1],
Perlmutter et al. [2], Riess et al. [3], Schmidt et al. [4]).
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NOVA VRSTA VISKOZNOG TEKUĆEG SVEMIRA BIANCHIJEVOG TIPA I
S VREMENSKI-PROMJENLJIVIM KOZMOLOŠKIM ČLANOM

Istražujemo novu vrstu kozmoloških modela viskoznog tekućeg svemira Bianchi-
jevog tipa I s promjenljivom kozmološkom konstantom, u kojima se širenje razma-
tra samo u dva smjera, tj., jedan od Hubbleovih parametara, H1 = A4/A, jednak
je nula. Razmatramo četiri slučaja: (i) volumni i viskozno-smični koeficijenti, (ξ)
i (η), su stalni, (ii) (ξ) i (η) su inverzno razmjerni vremenu, (iii) Λ je razmjeran
inverznom kvadratu vremena i (iv) ξ i η razmjerni su ljestvici širenja svemira u
modelu. Nalazimo da je kozmološka konstanta pozitivna i opadajuća funkcija vre-
mena, što je u skladu s nedavnim ishodima opažanja supernova Ia. Raspravljaju se
takod–er neka fizikalna i geometrijska svojstva tih modela.
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