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Kantowski-Sachs cosmological models with perfect fluid and time varying G and
Λ are presented. Exact solutions of the field equations are obtained by using the
scalar of expansion proportional to the shear scalar θ ∝ σ, which leads to a relation
between the metric potentials A = Bn, where n is a constant. The corresponding
physical interpretation of the cosmological solutions are also discussed.

PACS numbers: 04.20.Jb, 98.80Cq UDC 524.83

Keywords: cosmology, varying G and Λ, Kantowski-Sachs model

1. Introduction

In the Einstein theory of gravity, the Newtonian ‘constant’ G and cosmological
‘constant’ Λ are considered as fundamental constants. The gravitational ‘constant’
G plays the role of coupling constant between geometry of space and matter in
the Einstein field equations. In an evolving universe, it appears natural to look at
this constant as a function of time. Dirac [1] suggested a time-varying gravitational
constant. The large-number hypothesis (LNH) proposed by Dirac [2, 3] leads to a
cosmology where G varies with cosmic time. There have been many extensions of
the Einstein’s theory of gravitation, with time dependent G, in order to achieve
a possible unification of gravitation and elementary-particle physics. Canuto and
Narlikar [4] have shown that G varying cosmology is consistent with whatever cos-
mological observations are presently available. Researchers discussed the possibility
of an increasing G [5, 6, 7].

The Λ term arises naturally in general relativistic quantum field theory where
it is interpreted as the energy density of the vacuum (Zel’dovich [8, 9], Ginzburg
et al. [10], Fulling et al. [11]). Cosmological models with variable G and Λ have
been studied by a number of researchers [12 – 19] for an homogeneous and isotropic
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FRW line element. Bianchi type-I models with variable G and Λ have been studied
by Beesham [20], Vishwakarma et al. [21], Vishwakarma [22], Maharaj and Naidoo
[23], Arbab [24, 25] and Pradhan and Yadav [26].

It is well known that exact solutions of general theory of relativity for homoge-
neous spacetimes belongs to either Bianchi type or to Kantowski-Sachs [27] type.
Weber [28, 29] has done qualitative study of the Kantowski and Sachs [30] cosmo-
logical models. Lorcoz [31], Gron [32], Matravers [33], Krori et al. [34], Darowski
[35] Li and Hao [36] have also studied cosmological models for the Kantowski-
Sachs space-time. Singh and Agrawal [37] discussed Kantowski-Sachs type models
in Saez and Ballester scalar tensor theory. Recently Pradhan and Yadav [26] have
done Kantowski-Sachs model with variable G and Λ by assuming of a power-law
time variation of the expansion factor.

In this paper, we consider space-time of Kantowski-Sachs model in a general
form with variable G and Λ. We apply the equation of state p = ωǫ and scalar of
expansion proportional to the shear scalar θ ∝ σ [38].

2. The Kantowski-Sachs model (check title)

We consider the Kantowski-Sachs metric in the form

ds2 = dt2 −A2dr2 −B2(dθ2 + sin2 θ dφ2) , (1)

where A and B are functions of the cosmic time t alone.

Einstein’s field equations with variable G and Λ in suitable units are

Rij −
1

2
Rgij = 8πG(t)Tij + Λ(t)gij . (2)

The energy momentum tensor for a perfect fluid is

Tij = (ǫ+ p)vivj − pgij , (3)

where ǫ is the energy density of cosmic matter and p is its pressure.

Einstein’s field equation (2) for the metric (1) leads to

2
B̈

B
+

(

Ḃ

B

)2

+
1

B2
= 8πGp− Λ , (4)

Ä

A
+

B̈

B
+

ȦḂ

AB
= 8πGp− Λ , (5)

2
ȦḂ

AB
+

(

Ḃ

B

)2

+
1

B2
= −8πGǫ− Λ , (6)
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where the overhead dots denote the ordinary differentiation with respect to t.

In view of the vanishing divergence of the Einstein tensor, Eq. (2) gives

ǫ̇+ (ǫ+ p)

(

Ȧ

A
+

2Ḃ

B

)

+ ǫ
Ġ

G
+

Λ̇

8πG
= 0 . (7)

We now assume that the law of conservation of energy (T ij

; j ) gives

ǫ̇+ (ǫ+ p)

(

Ȧ

A
+

2Ḃ

B

)

= 0 . (8)

Using Eq. (7) yields

Ġ = −
Λ̇

8πǫ
(9)

indicating thatG increases or decreases as Λ decreases or increases. We also consider
the perfect fluid equation of state,

p = ωǫ , (10)

where ω, as suggested by Wang [39], may be defined as

ω =
1

3

ǫr
(ǫm + ǫr)

, (11)

with ǫ = ǫm + ǫr, ǫm and ǫr being the matter crest mass and radiation energy
densities. As the variation of ω(t) is slow as compared with the expansion of the
universe, we expect that near the time when matter and radiation energy densities
are equal, we can approximate ω(t) as the step function :

ω ∼=

{

1/3 in the radiation dominated universe,
0 in the matter dominated universe.

(12)

From Eqs. (4) and (5), we have

B̈

B
−

Ä

A
+

Ḃ

B

(

Ḃ

B
−

Ȧ

A

)

+
1

B2
= 0 . (13)

There are only five independent equations in six unknowns A, B, p, ǫ, G and Λ, so
an extra equation is needed to solve the system completely. We assume the scalar
of expansion to be proportional to the shear scalar, θ ∝ σ [38], which leads to a
relation between metric potentials

A = Bn, (14)
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where n is a constant.

Using Eqs. (14) and (13), we have

B̈

B
+ (n+ 1)

Ḃ2

B2
+

1

1− n

1

B2
= 0, n /=1 . (15)

Integrating Eq. (15), we obtain

Ḃ =

√

B2(n+1) + C1(n2 − 1)

B(n+1)
√
n2 − 1

, (16)

where C1 is a constant of integration. With the help of Eqs. (14) and (16), the line
element (1) reduces to

ds2 =
B2(n+1)(n2 − 1)

B2(n+1) + C1(n2 − 1)
dB2 −B2ndr2 −B2(dθ2 + sin2 θ dφ2) . (17)

By suitable transformation of coordinates, the line element (17) reduces to

ds2 = (n2 − 1)
T 2(n+1)

T 2(n+2) + C1(n2 − 1)
dT 2 − T 2ndr2 − T 2(dθ2 + sin2 θ dφ2) . (18)

For the model (18), the geometrical and physical parameters can be easily ob-
tained. The expressions for the energy density ǫ, gravitational constant G(t) and
cosmological constant Λ(t) are given by

ǫ =
k

T (n+2)(ω+1)
, k = constant (19)

G(t) =
T (n+2)(ω+1)

8πk(ω + 1)

[

2n

(1− n2)T 2
−

2(2n+ 1)C1

T 2n+4

]

(20)

Λ(t) =
(2n+ 1)C1

T 2n+4

(

1− ω

1 + ω

)

−
n2(ω + 1) + 2nω

(n2 − 1)(ω + 1)T 2
. (21)

The expansion scalar θ and scalar σ for the model (18) are

θ =
(n+ 2)
√
n2 − 1

√

T 2n+2 + C1(n2 − 1)

Tn+2
(22)

σ =
(n− 1)

√
3(n2 − 1)

√

T 2n+2 + C1(n2 − 1)

Tn+2
(23)
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For ǫ > 0, we require k > 0. The model has singularity at T = 0. The model starts
with ǫ, θ, σ and Λ, all being infinite and continues to expand till T = ∞. For this
model, the scale factors are zero at T = 0, which shows that the spacetime exhibits
point type singularity. Gravitational constant G(t) is zero initially and gradually
increases and tends to infinity at late times. Since σ/θ = constant, the model
does not approach isotropy for large value of T . Therefore, the model describes a
continuously expanding, shearing, non-rotating universe with the big-bang start.
In this model we observe that the cosmological term Λ is infinite initially, gradually
decreases and becomes zero at late times.

In the special case of C1 = 0, from Eq. (16) the line element (1) reduces to

ds2 = dt2 −
t2n

(n2 − 1)n
dr2 −

t2

(n2 − 1)
(dθ2 + sin2 θ dφ2) . (24)

After suitable transformation, Eq. (24) reduces to

ds2 = dT 2 − T 2ndr2 − T 2(dθ2 + sin2 θ dφ2) . (25)

The physical and geometrical parameters of the model (25) are

ǫ =
k2

T (n+2)(ω+1)
, k2 = constant , (26)

G(t) =
−n

4π(ω + 1)k2
T (n+2)ω+n , (27)

Λ(t) =
−n(n+ 2ω + nω)

(ω + 1)T 2
. (28)

The shear σ and expansion scalar θ are given by

σ =
(n− 1)
√
3T

, (29)

θ =
(n+ 2)

T
. (30)

Since σ/θ = constant, the model does not approach isotropy. We can obtain the
deceleration parameter q = (1 − n)/(n + 2), which shows that the deceleration
parameter is constant. The model of constant deceleration parameter has been
considered by Berman and Som [40]. The Hubble parameter H reads as

H =
n+ 2

3T
, (31)
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which can be written as

H =
n− 1

3qT
. (32)

For the present phase p, we obtain

Tp =
1− n

3qpHp

. (33)

It is evident that negative qp would increase the present age of the universe. From
Eq. (27), we obtain

Ġ

G
=

(n+ 2)ω + n

T
, (34)

and the present value is

(

Ġ

G

)

p

=
3[(n+ 2)ω + n]

1− n
Hpqp . (35)

We can find that the quantity Gǫ satisfies the condition for a Machian cosmological
solution, i.e. Gǫ ∼ H2, which follows from the model of Kalligas et al. [15].

For the energy density to be positive definite, we must have k2 > 0. The energy
density decreases as time increases and tends to zero as T tends to infinity. We
also observe that the spatial volume is zero at T = 0. Thus, the singularity exists
at T = 0 in the model. The gravitational constant is zero initially and gradually
decreases and tends to infinity at late times, whereas cosmological term Λ(t) varies
as square of the age of universe and tends to zero as T → ∞. It is noted that
negative value of G and Λ had already been considered by Vishwakarma [22] and
Singh et al. [18]. The deceleration parameter is constant for all time. For n = 1,
T0H0 = 1. This is within the current limits for the universe age 0.8 < T0H0 < 1.3
and is in good agreement with the best observation T0H0 ∼ 1 [41].

In the model (25) we observe that Λ ∼ H2 and Λ ∼ T−2, which is in accordance
with the main dynamical laws one finds in the literature proposed for the decay
of Λ. The dynamical law Λ ∼ H2 has be proposed by Carvalho et al. [42] and
considered by Salim and Waga [43], Arbab and Abdel-Rahman [44], Wetterich [45]
and Arbab [46]. In view of the present estimates, Λ is of the order H2

0 [47]. The
dynamical law Λ ∼ T−2 has been considered by several authors, e.g. Lau [48],
Berman [14], Beesham [20], Lopez et al. [49], Bertolami [50], Endo et al. [51] and
Canuto et al. [52], to mention a few.

3. Conclusion

We have obtained exact solutions of the field equations for Kantwoski-Sach
space-time with variable gravitational constant G(t) and cosmological constant Λ(t)
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in the presence of a perfect fluid. In general, the space time exhibits “point type
singularity” at initial stage and gravitational constant is zero, but cosmological
term varies as square of the age of universe. In the model, cosmological term Λ is
infinite at the beginning and it decreases to become zero at late times. Deceleration
parameter is constant for all time. In the model we obtain Λ ∼ H2 and Λ ∼ T−2

which is in accordance with the main dynamical laws for the decay of Λ. We also
obtain that the model satisfies the condition for a Machian cosmological solution,
i.e. Gǫ ∼ H2, which follows from the model of Kalligas et al. [15].
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KANTOWSKI-SACHSOVI KOZMOLOŠKI MODELI S
VREMENSKI-PROMJENLJIVIM G I Λ

Predstavljamo Kantowski-Sachsove kozmološke modele s vremenski-promjenljivim
G i Λ koji sadrže perfektnu tekućinu. Izvodimo egzaktna rješenja jednadžbi polja
primjenom skalara razvoja koji je razmjeran posmičnom skalaru, θ ∝ σ, što vodi
na relaciju med–u metričkim potencijalima A = Bn, gdje je n stalan. Raspravljamo
i fizičko tumačenje kozmoloških rješenja.
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