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We calculated the cumulant moments in order to find the genuine two-particle
short-range correlations among the produced pions and also the correlation coeffi-
cients in order to quantify the correlations. We studied the cumulant moments and
their variation with the pseudorapidity phase-space interval for nucleus-nucleus in-
teractions (24Mg-AgBr at 4.5A GeV and 28Si-AgBr at 14.5A GeV), hadron nucleus
interactions (p-AgBr at 800 GeV) and hadron-hadron collisions (pp̄ at

√
s = 200

GeV and
√
s = 900 GeV). The analysis reveals the presence of genuine two-particle

short-range correlations among the produced pions in the multi-particle production
processes. It is found that the cumulant moments decrease with the increase of the
width of the rapidity phase-space intervals. The decrease of cumulant moments
with the increase of phase-space interval signifies that the short-range correlation
decreases. We investigated the variation of the correlation coefficients in order to
study the correlation effects in some more detail in the above mentioned interac-
tions. The nature of variations of the correlation coefficients with the phase-space
interval size is different for different types of interactions.

PACS numbers: 23.20.En, 25.75-q UDC 539.126
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1. Introduction

The collision of heavy ions at relativistic energies offers the right kind of environ-
ment to explore a variety of aspects related to hot and dense nuclear matter, which
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in turn enhances our existing knowledge about the nuclear equation of state as well
as provides us with the possibility of observing the signatures of an unusual form of
matter such as a quark-gluon plasma. Thus, during recent years, an intensive effort
has been devoted to investigate the formation and decay of highly-excited nuclear
matter produced in nucleus-nucleus collisions at various incident energies.

In the field of high-energy interactions, various experiments were performed
with lepton-lepton, hadron-hadron, hadron-nucleus and nucleus-nucleus interac-
tions at relativistic and ultra-relativistic energies to reveal the underlying dynamics
of multi-particle production process. There are several phenomena regarding inter-
actions between elementary particles, which have possibilities to be understood in
terms of correlation effect. Although it can not be said with absolute certainty,
whether particular physical processes are responsible for the correlated emission of
the produced particles, people have tried to explain their observations regarding
this in terms of resonances, clustering or heavier intermediate stages and shock
formations [1 – 4], etc.

For a pair of pions having like charges, narrow correlation is observed, which
is suggested to be a Bose-Einstein symmetry effect [5] rather than a consequence
of charge structure dynamics of particle production. As the heavy-ion interactions
came to the picture of high-energy interactions, new theories emerged and the study
on correlated particle production becomes one of the important keys to search for
new types of parameters. For example, in heavy-ion collision at nearly about 1A
GeV, the participant system is interpreted as a fireball and some nucleons co-
alesce to form composite particles. The size of the fireball and the duration is
measured in terms of two-particle correlation [6]. Non-statistical multiplicity fluc-
tuations leading to intermittency also speak in favor of the existence of correlation
in multi-particle production. Two- and three-particle correlation depend on various
parameters, namely momentum vectors, emission angles and the azimuthal angle
of the particles produced. Several studies using well known two- and three-particle
correlation function have been reported in different types of interactions [7]. When
only two and three particles are examined, the information about the rest of the
particles remains unknown. Correlation among more than three particles can be
studied by using the standard correlation function. But the problem becomes more
complex as the number of particles increase. Correlation functions are capable
of revealing the significant features of multi-particle production mechanism, and
therefore, are a potential source of information. Correlation studies are important
for the knowledge about the late stages of interactions. It plays a fundamental role
in extracting first information on the underline particle production mechanism.

The study of multiplicity distribution of the produced hadrons along with the
analysis of correlation among them stands in the frontier of investigations in the
area of multi-particle dynamics. The multiplicity distribution plays a fundamental
role in extracting the first information on the underlying particle production mech-
anism, while the correlations give details of the dynamics. The full multiplicity
distribution is a global characteristic and is influenced by the conservation laws.
On the contrary the multiplicity distributions in restricted phase-space domains
contributing to the correlations are local characteristics and have an advantage of
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being much less affected by the global conservation laws. In the last decade, the
study of multiplicity distribution in the limited region (bins) of phase space has at-
tracted immense interest in view of search for the local dynamical fluctuation of an
underlying self-similar fractal structure, the so called intermittency phenomenon.
For an extensive review one may consult Ref. [8]. Although this phenomenon has
been observed in various interactions, many questions about the intermittency are
still to be answered. Studying local fluctuations, one should remember that the
fluctuations of a given number of particles say q, is contributed by genuine lower
order p < q. To extract signals of the correlation of order p, one should be ac-
quainted with the advanced statistical technique of normalized factorial cumulant
moment [9 – 11]. In this context, it is to be mentioned that the search for genuine
higher-order correlation in multi-particle production process has been studied by
OPAL collaboration. They have established the existence of strong genuine multi-
hadron correlation up to the 5th order [12]. In proton-proton collisions, correlations
among more than three particles have also been observed [13 – 17].

In contrast to this situation, in heavy-ion collisions at low energies and/or in re-
actions of light nuclei, genuine correlations are found to have non-zero value only up
to third order [18]. Furthermore, it has been found that in general these correlations
become weaker as the reaction average multiplicity increases. In nucleus-nucleus in-
teractions at higher energies, of about ten to hundreds GeV per nucleon, only the
two-particle short range correlations are found to survive [19 – 20]. Thus in rela-
tivistic heavy-ion collision, the study of two-particle correlation presents significant
features of the nuclear interactions and is a potential source of information.

2. Method of analysis

In order to define the two-particle short-range correlation function, let us con-
sider a collision between two particles marked as a and b. It is assumed that the
collision between the particles yields exactly n particles in a sub-volume Ω of the
total phase space Ωtot. Let z represent the kinematical variable needed to specify
the position of each particle in this space. The distribution of points in Ω can be
characterized by continuous probability densities Pn(z1, z2, . . . , zn), n = 1, 2, . . . , n.
For simplicity, one may assume all final-state particles to be of same type. In this
case, the exclusive distributions Pn(z1, z2, . . . , zn) can be taken fully symmetric in
(z1, z2, . . . , zn); they describe the distributions in Ω when the multiplicity is exactly
n.

The inclusive q particle densities ρq(z1, z2, . . . , zn) in general contain trivial
contributions from lower-order densities. Under certain condition it is, therefore,
advantageous to consider a new sequence of functions Cq(z1, z2, . . . , zn) as those
statistical quantities that vanish whenever one of their arguments becomes statisti-
cally independent of the others. The quantities with such properties are well known
correlation functions. In general two-particle correlation function is given by

C2(1, 2) = ρ2(1, 2)− ρ1(1)ρ1(2) . (1)
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It is convenient to divide the functions ρq and Cq by the product of one particle
densities. This leads to the definition of the normalized inclusive density correla-
tions.

There is a variety of models which describe particle production as a branch-
ing process, see for example Ref. [21]. The main prediction of these models is a
suitable parametrization for the multiplicity distribution. Further, more details of
the underlying dynamics come from the investigation of the cumulant moment of
multiplicity distribution given in Ref. [8]. One of the most popular methods used to
describe data in full and limited phase space is the negative binomial distribution
or NBD as it is abbreviated. Before a detailed discussion can be made of the mul-
tiplicity fluctuations and correlation, it is worthwhile to review some properties of
the NB distribution. This distribution has distinct properties which form the basis
of counting statistics. The Poisson distribution results from the repeated indepen-
dent trials, each with the same probability for a given outcome. If the probability
of the outcome varies, or if some correlations are introduced so that the trials are
not independent, the distribution tends to become negative binomial [22]. One may
consult Refs. [23, 24] for a review on this subject and its historical development.

The negative binomial distribution function for n charged particles in the final
state is expressed as

Pn(n̄, k) =
(n+ k − 1)!

n!(k − 1)!

(

n̄

n̄+ k

)n (
k

n̄+ k

)k

. (2)

Here n̄ and k are two NBD parameters. n̄ is the average multiplicity of the distri-
bution. The parameter k describes the shape of the distribution. k is related to the
dispersion of the distribution by the following relation

D2 = n̄+
(n̄)2

k
. (3)

For the NB distribution the normalized factorial cumulant moment is governed
by the parameter 1/k. The normalized factorial cumulants (Kq) of the NBD are
related in a simple manner to the NBD parameter k,

Kq =
(q − 1)!

kq−1
. (4)

The second-order factorial cumulant moment can be obtained putting q = 2 in the
above relation. We easily get

K2 =
1

k
. (5)

The factorial moment of order q of the multiplicity distribution of the particles
in a phase-space domain is equal to the integral of q particle inclusive density ρq
over the domain [8]. As in the cluster expansion of statistical mechanics, ρq can
be decomposed into the sum of contributions from the accidental coincidence of
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the particles in the phase space and the true correlations. The latter are denoted
here by unnormalised cumulants Kq. Being the bin averaged factorial cumulant
functions Kq is a direct measure of stochastic dependence in multiples of exactly q
particles. By the construction Kq vanishes whenever a particle within q-tuple is sta-
tistically independent of one of the others. For Poissonian multiplicity fluctuations,
the cumulants of all order which are greater than 1 vanish identically. Non-zero
values of cumulants therefore indicate the presence of correlation.

The cumulant moments always point out whether the particle production is cor-
related or not. It does not give any information on the quantification of correlation.
To quantify the presence of correlation, another simple method is proposed. In this
new method, a parameter called the correlation coefficient is introduced to quantify
the degree of correlation between any two quantities. If the multiplicity distribution
of the produced particles can be fitted with negative binomial distribution, one can
easily calculate the correlation coefficient.

The correlation coefficient b has a simple relationship with the NBD parameter
k and the average multiplicity n̄ [25]. In terms of n̄ and k, the correlation coefficient
is expressed as

b =
n̄

n̄+ k
. (6)

If the NBD distribution is studied in a different pseudo-rapidity interval, the cor-
relation coefficient can also be calculated in a different pseudo-rapidity interval
and the variation of correlation coefficient in different pseudo-rapidity intervals can
be investigated. Higher values of correlation coefficient indicate higher correlation
strength.

If we put k = ∞ in the above equation, we get b = 0, and the distribution (2) will
become Poissonian. It is well known that if the charged particles were produced
randomly and independently, their multiplicity distributions will be Poissonian.
The Poisson distribution results from repeated independent trials, each with the
same probability for a given outcome. If the probability of outcome varies or if any
correlation is introduced so that the trials are not independent, the distribution
tends to become negative binomial giving non-zero values of correlation coefficient
b.

In this brief report, we have calculated the second-order cumulant moment and
also correlation coefficient of the produced pions and investigated the variation of
correlation coefficient with the different pseudo-rapidity interval size (∆η) for the
nucleus-nucleus interactions (24Mg-AgBr at 4.5A GeV, 28Si-AgBr at 14.5A GeV),
hadron-nucleus interactions (p-AgBr at 800 GeV) and hadron-hadron collisions (pp̄
at

√
s = 200 GeV and

√
s = 900 GeV). In the case of pion multiplicity distribution,

the phase-space variable used is pseudo-rapidity η. It is related to the emission
angle θ (measured w.r. to the beam direction) by the relation η = − ln tan(θ/2).
The details of detector used, number of events and other experimental details can
be found in Ref. [26] for the 24Mg-AgBr interactions, in Ref. [27] for the 28Si-AgBr
interactions at 14.5A GeV and for the p-AgBr interactions at 800 GeV, and in
Ref. [28] for the pp̄ collisions at

√
s = 200 GeV and

√
s = 900 GeV.
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3. Data analysis and results

The multiplicity distribution of charged particles were studied in the case of
24Mg-AgBr interactions 4.5A GeV [26], 28Si-AgBr interactions at 14.5A GeV and
p-AgBr interactions at 800 GeV [27], and the pp̄ collisions at

√
s = 200 GeV and√

s = 900 GeV [28] with increasing intervals of pseudo-rapidity. In all cases, the
multiplicity distribution was fitted with the NBD distribution. The experimental
results of the NBD distribution can be found in Refs. [26 – 28]. From these papers,
one can see that the k parameters of the NBD fit show a linear increase with the
width of the rapidity phase-space interval and also with the average multiplicity.
Now we will calculate the cumulant moment in order to search for the genuine two-
particle short-range correlation in the multi-particle production in nucleus-nucleus,
hadron-nucleus and hadron-hadron interactions. Later we will investigate how the
cumulant moment, which plays an important role in our analysis, varies with the
phase-space interval. The importance of studying factorial cumulant moment lies in
the fact that unlike the factorial moment, cumulant moments are a direct measure
of stochastic independence among the group of exactly q particles emitted in the
same phase-space cell. In much of the current literature, it is taken for granted that
F2 (the factorial moment) scales rather thanK2. However, it may be the cumulants,
which have the feature of scaling rather than the factorial moment.

We have calculated the second-order cumulant moment for different rapidity
window sizes in order to search for the genuine two-particle short-range correlation
using Eq. (5). The values of the NBD parameters k, which are required for this
purpose have been taken from the literature published earlier [26 – 28]. We show
the values of the second-order cumulant moment in Tables 1 to 5, respectively, for
the 24Mg-AgBr interactions at 4.5A GeV, 28Si-AgBr interactions at 14.5A GeV, p-
AgBr interactions at 800 GeV, and pp̄ collisions at

√
s = 200 GeV and at

√
s = 900

GeV. From the tables, it is seen that the second-order cumulant moments have non-

TABLE 1. The values of ∆η, n̄, k, b and K2 for 24Mg-AgBr interactions at
4.5A GeV.

∆η n̄ k b K2

0.5 1.51 1.14 0.563± .018 .877

1.0 3.3 1.32 0.714± .021 .757

1.5 5.02 1.55 0.764± .032 .645

2.0 6.42 1.78 0.783± .035 .562

2.5 8.04 2.00 0.803± .045 .5

3.0 9.04 2.34 0.794± .058 .427

3.5 10.15 2.79 0.784± .065 .358

4.0 10.67 3.22 0.763± .078 .310

4.5 11.50 3.53 0.765± .089 .283

5.0 11.67 3.81 0.754± .092 .262
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TABLE 2. The values of ∆η, n̄, k, b and K2 for 28Si-AgBr interactions at
14.5A GeV.

∆η n̄ k b K2

0.2 1.84 0.65 0.734± .011 1.53

0.5 4.92 0.65 0.883± .034 1.53

1.00 9.16 0.64 0.934± .045 1.56

2.00 17.97 0.66 0.964± .049 1.51

4.00 27.10 0.81 0.974± .056 1.23

6.00 33.48 1.16 0.965± .061 .862

TABLE 3. The values of ∆η, n̄, k, b and K2 for p-AgBr interactions at 800 GeV.

∆η n̄ k b K2

0.2 0.77 2.87 0.211± .008 .348

0.5 2.12 2.47 0.462± .009 .404

1.0 4.08 3.44 0.542± .012 .290

2.0 7.85 6.24 0.557± .017 .16

4.0 12.7 7.99 0.613± .022 .125

6.0 13.68 7.46 0.647± .026 .13

TABLE 4. The values of ∆η, n̄, k, b and K2 for pp̄ collisions at
√
s = 200 GeV.

∆η n̄ k b K2

0.2 0.96 1.8 0.347± .009 .555

0.25 1.21 1.9 0.383± .019 .526

0.5 2.48 2.0 0.553± .034 .500

1.0 5.32 2.3 0.693± .037 .434

1.5 8.1 2.6 0.757± .044 .384

2.0 10.7 2.6 0.804± .05 .384

2.5 13.2 2.8 0.825± .053 .357

3.0 15.4 3.1 0.832± .065 .322

3.5 17.4 3.4 0.835± .068 .294

4.0 18.8 3.7 0.835± .069 .270

zero values for every rapidity window size and for all interactions stated above. The
non-zero values of the second-order cumulant moments depict the presence of two-
particle short-range correlation among the produced pions. From the tables, it is
observed that the values of the cumulant moments decrease as the rapidity window
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TABLE 5. The values of ∆η, n̄, k, b and K2 for pp̄ collisions at
√
s = 900 GeV.

∆η n̄ k b K2

0.2 1.42 1.5 0.485± .012 .67

0.25 1.79 1.5 0.544± .022 .67

0.5 3.55 1.5 0.703± .035 .67

1.0 7.4 1.7 0.813± .033 .59

1.5 11.1 1.8 0.863± .045 .555

2.0 15.0 2.0 0.882± .054 .500

2.5 18.8 2.1 0.893± .056 .476

3.0 22.1 2.3 0.905± .058 .434

3.5 25.3 2.4 0.913± .058 .417

4.0 28.0 2.6 0.915± .061 .384

4.5 30.3 2.9 0.912± .062 .344

5.0 32.2 3.1 0.912± .065 .322

sizes go on increasing. Thus one may point out that the strength of two-particle
short-range decreases as the rapidity width is increased. This observation stressed
the necessity of quantification of the correlation phenomenon.

In order to calculate the two-particle correlation coefficient, we used Eq. (6). The
values of the parameters needed are the average multiplicity (n̄) in different rapidity
windows and the NBD parameter k, which have been taken from Refs. [26 – 28] for
the different interactions.

The calculated values of the correlation coefficient for different rapidity windows
are tabulated in Table 1 for 24Mg-AgBr interactions at 4.5A GeV, in Table 2 for
28Si-AgBr interactions at 14.5A GeV, in Table 3 for p-AgBr interactions at 800
GeV, in Table 4 for pp̄ collisions at

√
s = 200 GeV and in Table 5 for pp̄ collisions

at
√
s = 900 GeV. In the tables, we also show the values of ∆η, n̄, K2 and k along

with the values of b. It is seen from the tables that as the value of ∆η increases,
the average multiplicity n̄ also increases. Thus for larger values of ∆η the presence
of long-range correlation may have been observed.

It is noticed from the tables that for 24Mg-AgBr interactions at 4.5A GeV and
28Si-AgBr interactions at 14.5A GeV, the correlation coefficients increase initially
with the increase of the rapidity window size and later show a tendency to decrease
as the rapidity window sizes (∆η) are increased more and more beyond a certain
value. A clear correlation maximum is observed in case of 24Mg-AgBr interactions.
This may be due to the fact that at larger values of ∆η, the two-particle short-
range correlation becomes much weaker and long-range correlation dominates. This
observation is very prominent in the case of nucleus-nucleus interactions. For p-
AgBr interactions at 800 GeV, the correlation coefficient increases as the rapidity
range increases. In pp̄ collisions at both

√
s = 200 GeV and

√
s = 900 GeV, the
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correlation coefficients increase initially and later become almost constant as the
window size ∆η increases.

We ploted the variation of the correlation coefficient with the size of the rapidity
window (∆η) in Fig. 1 for 24Mg-AgBr interactions, in Fig. 2 for 28Si-AgBr interac-
tions at 14.5A GeV, in Fig. 3 for p-AgBr interactions at 800 GeV, in Fig. 4 for pp̄
collisions at

√
s = 200 GeV and in Fig. 5 for pp̄ collisions at

√
s = 900 GeV. From

the figures, it may be concluded that for smaller values of ∆η, the correlation coeffi-

Fig. 1 (left). The plot of b against ∆η for 24Mg-AgBr interactions at 4.5A GeV.

Fig. 2. The plot of b against ∆η for 28Si-AgBr interactions at 14.5A GeV.

Fig. 3. The plot of b against ∆η for p-AgBr interactions at 800 GeV.
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Fig. 4 (left). The plot of b against ∆η for pp̄ collisions at
√
s = 200 GeV.

Fig. 5. The plot of b against ∆η for pp̄ collisions at
√
s = 900 GeV.

cient increases, so there is an increase of the correlation strength in the short-range
correlation. But for larger values of ∆η, long-range correlation becomes effective.
The study reveals that the correlation coefficient, which is used to quantify the cor-
relation effect, behaves differently in the cases of nucleus-nucleus, hadron-nucleus
and hadron-hadron interactions. The reason behind this may be that the nuclear
geometry for the different interacting system is different. The multiplicity distribu-
tion of produced particles is influenced by the nuclear geometry and, consequently,
the nature of the correlation is also influenced.

It has also been echoed [29] that in nucleus-nucleus interactions, the overall
multiplicity fluctuations are closely related to the nuclear geometry. Fu Hu Liu [30]
studied the unified description of multiplicity distribution of final state of particle
produced at higher energies. According to him, the nuclear geometry plays a very
important role in the multiplicity distribution of the produced particles in the case
of nucleus-nucleus interactions. It is obviously needed to investigate whether the
presence of short-range correlation in the smaller phase-space interval is influenced
by the overall multiplicity distribution. More work in this regard is in progress.

4. Conclusion

From our analysis it can be concluded that:

1. For nucleus-nucleus interactions for smaller values of ∆η, the correlation
coefficient increases. So there is an increase of short-range correlation strength.
However, for larger values of ∆η the short-range correlation decreases and long-
range correlation becomes effective.
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2. For hadron-nucleus interactions, short-range correlation increases with the
increase of ∆η.

3. For hadron-hadron interactions, short-range correlation increases initially and
later saturates at larger window size (∆η).

4. The correlation coefficient, which is used to quantify the correlation effect, be-
haves differently in the case of nucleus-nucleus, hadron nucleus and hadron-hadron
interactions. The reason behind this may be that the nuclear geometry for the
different interacting systems is different. The multiplicity distribution of produced
particles is influenced by the nuclear geometry and consequently the nature of cor-
relation is also influenced.
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OVISNOST KORELACIJSKOG KOEFICIJENTA O VELIČINI INTERVALA
FAZNOG PROSTORA U VISOKO-ENERGIJSKIM MED– UDJELOVANJIMA

Izračunali smo kumulacijske momente radi nalaženja pravih dvočestičnih kratko-
dosežnih korelacija med–u proizvedenim pionima te korelacijske koeficijente radi
utvrd–ivanja njihovih iznosa. Proučavamo korelacijske momente i njihove prom-
jene sa širinom intervala pseudorapiditeta u faznom prostoru za med–udjelovanja
jezgra-jezgra (24Mg-AgBr na 4.5A GeV i 28Si-AgBr na 14.5A GeV), hadron-
jezgra (p-AgBr na 800 GeV), te u sudarima hadrona (pp̄ na

√
s = 200 GeV i√

s = 900 GeV). Analize pokazuju prisutnost pravih dvočestičnih kratko-dosežnih
korelacija med–u pionima proizvedenim u mnogočestičnoj tvorbi. Nalazimo sman-
jenje kumulacijskih momenata s povećanjem širine intervala fazno-prostornog ra-
piditeta. Pad kumulacijskih momenata s povećanjem fazno-prostornog intervala
znači da se smanjuju kratkodosežne korelacije. Takod–er smo istraživali promjene
korelacijskih koeficijenata radi podrobnijeg poznavanja korelacijskih efekata u nave-
denim med–udjelovanjima. Narav promjena korelacijskih koeficijenata s veličinom
fazno-prostornog intervala različita je u tim med–udjelovanjima.
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