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It has been shown that within the framework of the fractional spectral triplet ac-
tion in noncommutative geometry, constructed recently by the author in the sense
of Erdélyi-Kober fractional integral considerations, more quantum vacuum energy
per a single mode is generated in the background of the spatially flat Friedmann-
Robertson-Walker spacetime geometry. Our analyses are based on Broda et al. for-
malism which uses the coordinate gauge freedom transformations in the Euclidean
version of the formalism of effective action. The result is estimated for a particular
value of the fractional integral exponent which corresponds to the Raspini fractional
Dirac operator of the order 2/3.
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1. Introduction

Fractional calculus is a special field of applied mathematics which was developed
mainly in the 19th century. Over the last decades the usefulness of this special
mathematical framework in applications as well as its merits in pure mathematics
has become more and more evident [1 – 5]. Because of the integral in the definition
of the fractional order derivatives, it is obvious that these derivatives are non-local
operators, which explains one of their most significant uses in applied sciences: the
fractional derivatives possess the memory effect. In other words, at a certain point
in time or space, the fractional or non-integer derivative contains information about
the function at earlier points in time or space, respectively. Although assumptions
about the existence of different types of fractional order derivative and integral, the
Riemann-Liouville (RL) and the modified Erdélyi-Kober (EK) operators are still
the most frequently used and have been popularized when fractional integration is
performed. They are defined respectively as follows:
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A-Riemann-Liouville fractional integral

If f(t) ∈ C
1([t0, b]) : t ∈ [t0, b], the left and right Riemann-Liouville fractional

derivative (LRFD) of orders α, β ∈ R, α, β < 1 are defined by

Dα
a+

f(t) =
1

Γ(1− α)

d

dt

t
∫

a

f(τ)(t− τ)−αdτ , (1)

Dβ
b
−

f(t) =
1

Γ(1− β)



− d

dt

b
∫

t

f(τ)(τ − t)−βdτ



 , (2)

where τ is the intrinsic time and t the observer time. This multi-time characteristic
is important in applications and is the main ingredient of the theory being developed
by Udriste [6].

B-Erdélyi-Kober Fractional Integral

For Ḡ ∈ Lp(0,∞), the right and left modified Erdélyi-Kober operators of frac-
tional integration for order 0 < α < 1 are defined through association of power
weights as follows [7,8̇]:

Iright(α, χ : m)Ḡ(t) =
m

Γ(α)
t−χ−mα+m−1

t
∫

t0=0

τχ(tm − τm)α−1Ḡ(τ)dτ , (3)

Ileft(α, ξ : m)Ḡ(t) =
m

Γ(α)
tξ

∞
∫

t

τ−ξ−mα+m−1(τm − tm)α−1Ḡ(τ)dτ , (4)

where ℜe(α) > 0, ℜe(χ) > −1/q, ℜe(ξ) > −1/p, 1/p+ 1/q = 1, p ≥ 1 and m > 0.

Although various fields of application of fractional derivatives and integrals are
already well established, some others have just started, in particular the study of
fractional problems in classical and quantum field theory. Nevertheless, the emerg-
ing fractional field theory is still an open problem under development. During the
last decade, there are a number of papers devoted to investigation of fractional pow-
ers of second order classical differential operators of mathematical physics based
on the use of the Riemann-Liouville fractional derivative, in particular the wave
operator, Klein-Gordon and Dirac operators, and Schrödinger operators [9 – 17]. Of
interest for us is the case of the fractional Dirac operator which plays in reality a
crucial role in physics and geometry, in particular in Connes noncommutative ge-
ometry (NCG). NCG attracts an ever increasing attention of researchers, especially
after the greatest success of unifying the forces of nature into a single gravitational
action-the spectral action [18 – 20]. The Einstein-Hilbert spectral action was found
to be approximated by the trace of a simple function of the Dirac operator.

In a more recent work [21], a fractional version of the square of the Dirac
operator was constructed and accordingly the fractional spectral action principle
(FSAP) was investigated and constructed as well [22, 23]. We summarize the basic
results as the following:

136 FIZIKA B (Zagreb) 19 (2010) 3, 135–142



el-nabulsi: D2/3 generates more quantum vacuum energy

1. For a fractional spectral triplet action based on the RL fractional integral,
both the cosmological constant and the first-order scalar curvature are absent.
The complexified action is dominated only by higher-order curvature terms and
their complexified counterpart with corrections which are small for low curvature
geometries.

2. For the case of the FSAP based on the Erdélyi-Kober fractional integral, the
range of solutions is larger than that from its previous build from the Riemann-
Liouville fractional integral. A cosmological constant may be present in the theory
in particular if Raspini’s Dirac operator of order 2/3 is taken into account [24, 25].
This result strongly suggests that the fractional spectral action principle in the
sense of Erdélyi-Kober is more generalized.

In the present paper we extend the 2nd formalism to the case of quantum vacuum
energy within the framework of fractional effective action in the background of
Friedmann-Robertson-Walker (FRW) spacetime geometry.

We will deal for simplicity with fractional time-variable. The quantum vacuum
energy is in fact a difficult problem in modern cosmology: the vacuum energy is set
to be constant with time while the matter energy density is a decreasing quantity,
their ratio must be set to a specific infinitesimally small value 10−120 in the early
Universe so as to nearly coincide today, i.e. a huge vacuum energy which by about
120 orders of magnitude exceeds the experimental limit [26]. Despite the fact that
our novel approach does appeal to exotic assumptions, we will show that the idea
discussed here will adhere to the standard quantum field theory formalism as closely
as possible and in with a much better estimation than the one found recently in
literature, mainly the Broda et al. approach [27].

The paper is organized as follows: in Section 2, we briefly recall the necessary
definitions and properties of the fractional spectral action principle in the sense of
Erdélyi-Kober. Our results are stated, proved and illustrated in Section 3. We end
with Section 4 with conclusions and perspectives

2. Fractional spectral action principle

Before starting with our calculation, this is the right place to say several
words about the fractional spectral triplet in the sense of Erdélyi-Kober within
the framework of noncommutative geometry. Connes noncommutative geometry
generalizes (C∞(M), L2(M,S), D) to a spectral triplet (A,H, D), where A is a
smooth algebra acting on a separable Hilbert space H = L2(M,S), D is the her-
mitian self-adjoint operator that refers to as Dirac operator acting on H such that
‖[D, π(x)]‖=‖[grad π(x)]‖∞, π ∈ C(M). M is an orientable, connected, compact,
N -dimensional differentiable unbounded manifold. The algebra A = C∞(M) of
smooth functions on a compact boundaryless N -dimensional spin manifold M acts
in H by multiplication operators as follows: (fg)(x) = f(x)g(x), ∀x ∈ M . The
total Riemannian spin geometry of M can be reconstructed from (A,H, D). A pos-
itive functional on the affine space set F containing all possible Dirac operators
is needed to obtain the dynamics on the gravitational field. This is the celebrated

FIZIKA B (Zagreb) 19 (2010) 3, 135–142 137



el-nabulsi: D2/3 generates more quantum vacuum energy

spectral action principle which states that the bosonic action depends only on the
spectrum of the covariant Dirac operator as S = TrF [D2/ε2] : F → R

+ where F is
any regular and fast decreasing function at infinity with F (x) ≥ 0 if x ≥ 0 and ε is
a UV cutoff in the units length to the power two (Planck’s length) [18 – 20, 28].

We summarize our basic results making use of equations (1) – (4) [22].

Definition II-1: In the fractional spectral triplet (A,H, Dα) in the sense of

Erdélyi-Kober, where Dα is the fractional Dirac operator of order α, the left func-

tion Ḡ at infinity is defined, under appropriate conditions, by

[

Ḡ
α,n/2−k−1,m
2k, left

]

(t) = lim
t→∞

1

Γ(α)

t
∫

0

τn/2−k−1(tm − τm)α−1Ḡ(τ)dτ

=
1

m
lim
t→∞

Ileft(α, χ/2− k − 1 : m)Ḡ(t) · tn/2−k+mα−m . (5)

Corollary 1: The trace of the fractional bosonic action in the Erdélyi-Kober

fractional action framework takes in n-dimensional the form

TrF

[

D2α

ε2

]

=
1

m
lim
t→∞

∑

n−2<2k≤n

εn−2kIleft(α, χ/2− k − 1 : m)Ḡ

×tn/2−k+mα−m

∫

M

a2k(D
2α)

√
g dnx+O

(

1

ε2

)

, (6)

where a2k(D
2α) is the Seeley-de Witt coefficient that occurs in the expansion of

Tr
[

exp(−τD2α)
]

=
∑

n−2<2k≤n

τk−n/2

∫

M

a2k(D
2α)

√
g dnx+O(τ), (7)

when τ → 0 and α ≤ 1
m (k − n/2) + 1 to avoid divergence.

Corollary 2: In the EK-fractional spectral action principle, the Seeley-de Witt

coefficient that occurs in the expansion of

Tr
[

exp(−τD2α)
]

=
∑

n−2<2k≤n

τk−n/2

∫

M

a2k(D
2α)

√
g dnx+O(τ) (8)

admits two possible conditions n− 2m < 2k ≤ n for 0 < α ≤ 1
m (k − n/2) + 1.

The fractional spectral action in four-dimensions in the sense of Erdélyi-Kober
exists unless 2−m < k ≤ 2. For m = 2, k = 1, 2, and consequently

TrF

[

D2α

ε2

]

= ε2Fα
2

∫

M

a2(D
2α)

√
g d4x+ ε0Fα

4

∫

M

a4(D
2α)

√
g d4x , (9)

where we have neglected the higher-order non-physical terms. The first integral is
recognized as the scalar curvature gravitational action and besides the cosmological
constant is absent. It is an easy exercise to prove that only for m = 3, for which
−1 < k ≤ 2 (k = 0, 1, 2) and 0 < α ≤ 1/3, the cosmological constant may appear
in the theory. The special value of α = 1/3 indicates that we are dealing with a
fractional Dirac operator of order 2/3.
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3. Main results

It is commonly expected that the effective cosmological constant can be induced
by the 0th term of the Seeley-de Witt coefficient. For a Planckian UV cutoff, i.e.
ε = ~G/c3 [29] where ~, G and c are, respectively, the reduced Planck’s constant,
gravitational coupling constant and velocity of light, the 0th fractional term yields
Casimir-like density contribution of the form [22]

ã0 = ∓1

4

c7

16π2~G2

m

Γ(α)
t−χ−mα+m−1

t
∫

t0=0

τχ(tm − τm)α−1√g dτ

∫∫∫

d3x . (10)

Here the positive sign corresponds to a boson, whereas the negative sign corresponds
to a fermion. For the case of a spatially flat Friedmann-Robertson-Walker spacetime
with metric

ds2 = −dτ2 + a2(t)
[

dr2 + r2(dθ2 + sin2 θ dφ2)
]

, (11)

we can expand the scale factor a(t) around t = 0 like

a(t) = a(0) +

(

ȧ

a

)

0

τ +
1

2

(

ȧ

a

)2

0

τ2 +O(τ3) = 1+H0τ −
1

2
q0H

2
0 τ

2 +O(τ3) , (12)

where H0 ≡ ȧ/a is the Hubble expansion rate at the present time τ = 0 and q0
is the present deceleration parameter. We set a(0) = 1 in order to normalize the
coordinates to unity. Accordingly, the radical square of the metric is

√
g =

[

a2(τ)
]3/2

=
(

1 + 2H0τ + (1− q0)H
2
0 τ

2 +O(τ3)
)3/2

. (13)

Following the arguments of Ref. [27], one can effortlessly show that the infinitesimal
gauge transformation of the metric δgµν = ∂µξν + ∂νξµ with the gauge parameter
ξµ = (H0x

2/2−H0τx
i) cancels in Eq. (13) the linear part in time [30]. Therefore,

Eq. (10) is reduced to

ã0≈∓1

4

c7

16π2~G2

m

Γ(α)
t−χ−mα+m−1

t
∫

t0=0

τχ(tm−τm)α−1
[

1+
3

2
(1−q0)H

2
0 τ

2

]

dτ

∫∫∫

d3x .

(14)
By using some standard procedure in quantum field theory, we can subtract the
number one in the bracket which corresponds to the term uncoupled to gravitational
field and furthermore, we can discard the spatial volume as the integrand is time-
dependent. Besides, as the calculation is perturbative in time, the density must be
a fractional time average about the Planck’s infinitesimal time TP =

√

~G/c5, i.e.

1

TP

m

Γ(α)
T−χ−mα+m−1
P

TP
∫

0

τχ(Tm
P − τm)α−1dτ(·) . (15)

Therefore

ρ ≈∓1

4

c7

16π2~G2

3

2
(1−q0)H2

0 lim
T→TP

1

T

m

Γ(α)
T−χ−mα+m−1

T
∫

0

τχ+2(Tm−τm)α−1dτ . (16)
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Now, for m = 3 and 0 < α ≤ 1/3, we find

ρ ≈∓9

8

c7

16π2~G2
(1−q0)H

2
0

1

Γ(α)
lim

T→TP

1

T
T 3−χ−3α

T
∫

0

τχ+2(T 3−τ3)α−1dτ . (17)

The results for the densities for different values of the parameter χ are shown in
Table 1.

TABLE 1. Density for different values of the parameter χ.

χ
T
∫

0

τχ+2(T 3 − τ3)−3/2dτ ρ

−1 2π
3
√
3

≈ ∓ 9
8

c7

16π2~G2

2π
3
√
3
(1− q0)

1
Γ(1/3)H

2
0T

2
P

0 T ≈ ∓ 9
8

c7

16π2~G2 (1− q0)
1

Γ(1/3)H
2
0T

2
P

1
√
πT 2Γ(4/3)
22/3Γ(5/6)

≈ ∓ 9
8

c7

16π2~G2 (1− q0)
1

Γ(1/3)

√
πΓ(4/3)

22/3Γ(5/6)
H2

0T
2
P

− 4
3

Γ(4/3)Γ(5/9)

Γ(8/9)
3
√
T

≈ ∓ 9
8

c7

16π2~G2 (1− q0)
Γ(4/3)Γ(5/9)
Γ(1/3)Γ(8/9)H

2
0T

2
P

-2
3
√
2Γ(1/3)Γ(7/8)

T
√
π

∓ 9
8

c7

16π2~G2 (1− q0)
3
√
2Γ(7/6)√

π
H2

0T
2
P

Using the well-known relation ρ0 = 8πGρcrit/(3c
2) [31], we obtain the results

for ρ shown in Table 2.

TABLE 2. Density as a function of the critical density and the deceleration param-
eter for different values of the parameter χ.

χ = −1 ρ ≈ ∓0.009(1− q0)ρcrit

χ = 0 ρ ≈ ∓0.022(1− q0)ρcrit

χ = 1 ρ ≈ ∓0.019(1− q0)ρcrit

χ = − 4
3 ρ ≈ ∓0.03(1− q0)ρcrit

χ = −2 ρ ≈ ∓0.04(1− q0)ρcrit

Now, for q0 ≈ −0.7 [32], we find for χ = −2 and ρ ≈ ∓0.068ρcrit per a single
mode which is a much better estimation than the value deduced in Broda et al.
work which is ρ ≈ ∓0.01ρcrit. The experimental value is ρ ≈ ∓0.076ρcrit. It is

noteworthy that for χ = −2, the integral
T
∫

0

τχ+2(T 3−τ3)−3/2dτ does not converge.

Our result may be improved by a factor four if we make use of the regularization
procedure in quantum field theory [29]. It is noteworthy that all previous analyses
were explored for the case of the fractional Dirac operator D2/3 and for the special
value χ = −2.

140 FIZIKA B (Zagreb) 19 (2010) 3, 135–142



el-nabulsi: D2/3 generates more quantum vacuum energy

4. Conclusions and perspectives

In summary, making use of the coordinate gauge freedom discussed recently by
Broda et al. within the framework of the fractional spectral triplet action prin-
ciple based on the Erdélyi-Kober fractional integral approach, we have estimated
the vacuum density of the accelerated universe. It has been shown that fractional
estimation of the quantum vacuum energy can give a highly reasonable result if
compared to observations, better than the one derived by Broda et al. The result
is estimated for the particular value α = 1/3 which corresponds to a fractional
Dirac equation of the order 2/3. We pointed out that our estimated result is only a
simple example. Our main aim was to show the reader the importance of fractional
calculus in its broad range and its potential application in high energy physics. No
claim about the originality of the results presented in this paper is made, but it is
felt that the elementary use of operators of Erdélyi-Kober fractional integration to
obtain them might appeal to both the applied mathematician and the theoretical
physicist. Still, there are many open questions and serious problems to solve on
the way to build a successful universal fractional quantum field theory. The results
obtained in this work are promising.
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D2/3 STVARA VIŠE KVANTNE VAKUUMSKE ENERGIJE

Pokazuje se da se u okviru razlomnog spektralnog tripletnog djelovanja u neko-
mutativnoj geometriji, koji je nedavno uveo autor primjenom Erdélyi-Koberovog
razlomnog integrala, dobiva veća kvantna vakuumska energija po modu uz pozadi-
nu prostorno ravne Friedmann-Robertson-Walkerove geometrije prostora-vremena.
Ova se analiza zasniva na nedavnom radu Broda i sur. u kojoj se primjenjuju
transformacije u Euklidskoj inačici formalizma efektivnog djelovanja s koordinat-
nom baždarnom slobodom. Ishodi računa se procjenjuju za posebnu vrijednost
razlomnog integralnog eksponenta koji odgovara razlomnom Diracovom operatoru
reda 2/3 koji je uveo A. Raspini.
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