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In this letter, we discuss the late-time dynamics of a modified Gauss-Bonnet gravity
theory à la Brans-Dicke, dominated by freezing potentials V (φ) ∝ φ−n, n ∈ R. For
a certain choice of the parameter n, it is observed that the universe is dominated
by dark energy, accelerated in time and controlled by the Gauss-Bonnet invariant
term. Besides, the Brans-Dicke parameter ω ≫ 1 compatible with some recent re-
ports where this bound is updated by several thousands following from the bound
on “γ̃− 1” from the Cassini mission, γ̃ being the PPN parameter. Many additional
interesting features are raised and discussed in some details.
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1. Introduction

One of the most important discoveries over the past few years is the fact that
we live in an accelerated almost spatially flat universe with a density parameter
Ωk = −0.015+0.020

−0.016 (within a 2% margin of error). More precisely, recent cosmo-
logical observations indicate that there are two periods of accelerated expansion in
the history of our universe: cosmic inflation in the early universe (high energy lim-
its) and acceleration in the current expansion of the universe (low energy limits).
These facts are based on a number of cosmological and astrophysical observations
from the CMBR dataset of the Three-Year WMAP, data from Supernova Legacy
Survey of type SNeIa and large galaxy [1 – 7]. The simplest model that can explain
this unexpected dynamics and the present observable features of the universe is
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the ADCM model [8] which consists of a mixture of cosmological constant Λ and
CDM (or WIMPS) composed of weakly-interacting massive particles which must
be relics of a grand unified phase of the universe. Other popular models were also
proposed and these include scalar field driven dark energy or quintessence with a
very shallow many-forms potential (self-interacting) [9], viscous fluid [10], Chaply-
gin gas [11, 12], generalized Chaplygin gas model [13 – 16], holographic dark energy
[17, 18], mass-varying neutrino dark energy [19, 20], quintom cosmology [21 – 24],
and so on. Most of these models have important drawbacks and suffer from serious
fine-tuning problems, e.g. fine tuning of parameters for different types of potentials
which model quintessence, stability of radiative corrections from the matter sector,
etc.

There exist many phenomenological attempts (entirely in terms of a modified
gravity theory with higher-order corrections coming from superstrings orM -theory)
proposed to avoid these problems, which in reality can give rise to inflationary
solutions and consequently result in a better explanation of the cosmic acceleration
of the universe and the nature of the dark energy. Some nice alternative scalar
theories include string-inspired dilaton gravities, a time-varying energy density,
M/string theory, higher derivative gravity theories [25 – 29], Gauss-Bonnet (GB)
cosmology [30 – 33], non-minimal coupling theories in all their aspects and forms
[34, 35] and so on. Despite the fact that these scalar-tensor theories of gravity have
the potential to provide a linkage between the accelerated expansion of the universe
and of fundamental physics, many models apparently suffer from instabilities or are
incompatible with solar system measurements. The choice of possibilities reflects
the undisputable fact that the true nature of the DE has not been convincingly
explained yet.

While it is not easy to satisfy all known solar system tests at once, we wish to
construct an explicit model which describes the realistic universe expansion history
(radiation and matter epochs, transition to acceleration and accelerating era). An
interesting proposed theory as gravitational dark energy is scalar-Gauss-Bonnet
gravity with simple higher-order correction which is closely related with low-energy
effective heterotic string. It has been demonstrated that some scalar-GB gravities
may be compatible with the known classical history of the universe expansion, and
GB assisted dark energy may be constructed. More recently, some observations
indicate that many significant constraints of the GB gravity can be derived from
both solar system measurements and table-top laboratory experiments [36 – 42]. In
reality, scalar-tensor theories of gravity with and without non-minimal coupling to
the spacetime curvature in the gravitational action offer a suitable framework to
investigate various properties of the dynamics of the universe not found within the
standard cosmological model [28, 43 – 52].

The present paper is devoted to the study of some new aspects of a modified GB
theory. We expect that this model may have many interesting features for producing
in a natural way an epoch of accelerated expansion of the universe. Besides, the
cosmology model should contain a sufficiently long matter-dominated epoch that
takes place before acceleration in order to guarantee a decelerated epoch and large
structure and galaxy formation. We will concentrate on the late-time dynamical
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epoch. Since the Gauss-Bonnet term is a topological invariant in four dimensions
it does not contribute on its own to the Einstein field equations. It contributes to
the field equations if it couples to a spin-zero field. In other words, coupling the
later to a scalar field may produce a non-trivial effect, which could act as effective
dark energy.

Let us start from a four-dimensional modified gravity theory à la Brans-Dicke,

S =

∫ √−g dx4

(

1

2
ξF (φ)R− 1

2
ω∂µφ∂

µφ− V (φ)

+
1

2
f(φ)

(

R2 − 4RµνR
µν +RµνρσR

µνρσ
)

)

+
1

2

∫

dx4√−g Lm , (1)

where F (φ) and f(φ) are the generic functions of the scalar field, ξ is a free param-
eter in the theory, g is the metric, R is the scalar curvature, ω is the Brans-Dicke
coupling parameter, φ is the scalar field, R2 − 4RµνR

µν + RµνρσR
µνρσ is the GB

invariant and Lm is the Lagrangian for ordinary matter. f(φ), V (φ) and F (φ) are
given by the power-law functions f(φ) = f0φ

m, V (φ) = V0φ
n and F (φ) = F0φ

r,
with the constant parameters f0, V0 and F0 assumed equal to be equal to one
for mathematical simplicity, while (m,n, r) ∈ R. The fact that the corrections to
Einstein gravity are second order in curvature suggests they will automatically be
small. The GB term may couple with the scalar kinetic terms and thus may play an
important role for other classes of gravitational models. One of the main advantages
of such models is the fact that they exhibit power-law couplings and potentials and
admit tracker behaviour.

The variations of the action with respect to the metric gµν and the scalar field
φ yield, after some algebra, the following field equations

ξF (φ)

(

Rµν − 1

2
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)
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(
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)

= Tµν +

(

∇µφ∇νφ− 1
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gµν∇λφ∇λφ− V (φ)gµν
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, (2)

ω�φ− dV (φ)

dφ
+

dF (φ)

dφ

R

2
+

df(φ)

dφ

(

R2 − 4RµνR
µν +RµνρσR

µνρσ
)

= 0 , (3)

with stress-energy tensor Tµν = (pm+ ρm)uµuν + pmgµν , where pm and ρm are the
pressure and density of the perfect fluid and uµ is the fluid rest-frame four-velocity.

In this work, the spatially flat Friedmann-Robertson-Walker (FRW) model with
metric,

ds2 = −dt2 + a2(t)
[

dr2 + r2(dθ2 + sin2 θdφ2)
]

, (4)

is considered, a(t) being the scale curvature. The (t, t) component in the action
takes the form

ω

2
φ̇2 − 3ξφ̇

dF

dφ
H − 3ξH2F (φ) + V (φ)− 24φ̇

df

dφ
H3 + ρm = 0 , (5)
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where H = ȧ/a is the Hubble parameter and ρm is the matter density. Equation
(2) gives

ω(φ̈+ 3Hφ̇) +
dV

dφ
− 24

df

dφ
(ḢH2 +H4)− 3ξ

dF

dφ
(2H2 + Ḣ) = 0 . (6)

Besides, we assume that the conservation equation of matter ∇νT
µν = 0 holds for

the present theory. Therefore, the conservation equation takes the common form

ρ̇m + 3H(pm + ρm) = 0 . (7)

By assuming that the baryonic matter obeys the equation of state pm = (γ−1)ρm,
where γ is a real constant, Eq. (7) takes now the simplest form ρ̇m + 3Hγρm = 0.
To explore the solutions of Eqs. (5) and (6), we assume that (late-time behavior)
the scale factor behaves as a = a0t

q (power-law), where a0 is a positive constant
equal to one and q is assumed to be positive to correspond to expanding universe.
Moreover, we propose the power-law behavior of the scalar field φ = φ0t

p, where p is
a real constant with as well φ0 = 1. It is easy to check from Eq. (6) that a consistent
relation is obtained if the scalar curvature decays like R = t−2. Consequently, Eq. 6)
takes the form

ω
(

p(p−1)tp−2+3pqtp−2
)

+ntp(n−1)−24mtp(m−1)−4(q4−q3)−3ξrqtp(r−1)−2(2q−1)=0,
(8)

Thus consistency is obtained for n = 2(p−1)/p, m = 2(p+1)/p and r = 2. Further,
Eq. (5) gives

ω

2
p2t2(p−1) − 3ξpqrtpr−2 − 3ξq2tpr−2 + t2(p−1) − 24pq3mtpm−4 + ρm = 0 , (9)

from which a desirable consistent solution is obtained if the density of matter varies
like ρm = t2p−2. Hence, the continuity equation gives 3γq = 2 − 2p augmented by
r = 2. We may now discuss the cases illustrated in Table 1.

TABLE 1. Values of the parameters p, m, r and 3γq for different values of n.

n p m r 3γq

4 (Chaotic potential) -1 0 2 4

−1 (Freezing potential) 2/3 5 2 2/3

−2 (Freezing potential) 1/2 6 2 1

−4 (Freezing potential) 1/3 10 2 4/3

Notice that Rφ2 = t2p−2, just like the Gauss-Bonnet term which also varies like
R2f(φ) = t−4+pm = t2p−2 and, therefore, the modified gravity model introduced
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here reveals an interesting property which corresponds to the contribution of higher-
order curvature terms in late-time dynamics. For illustration purpose, we discuss
the case of n = −2 and we leave the rest of cases to the interested reader. It
is noteworthy that freezing potentials play a crucial role in different aspects of
quintessence and modern cosmology [53 – 55]. For n = −2, we obtain 3γq = 1 and,
accordingly, accelerated expansion occurs if for instance q > 1 or γ < 1/3. This
case corresponds to the equation of state parameter w = γ − 1 < −2/3 which
lies within the observational limits [1 – 7]. In Fig. 1, we plot in 3D the function
R2f(φ) = Rφ2 = t2p−2 = t2a, a = p− 1.

Fig. 1. Plot in 3D of the function R2f(φ) = Rφ2 = t2p−2 = t2a, a = p− 1.

After simple algebraic manipulation, Eqs. (8) and (9) give

ω = −96q3 + 120q2 − 24

2q + 1
+

8

q
, (10)

ξ =
2− 27q3

3q(q + 1)
− 18q4 − 24q3 + 15q2 − q + 1

q(2q + 1)
, (11)

with q /=(−1,−1/2, 0). Note that in the string theory, ω = −1, then q ≈ 1.25
and ξ ≈ −6, but experimental observations require |ω| > 40000, following from
the bound “γ̃ − 1” from the Cassini mission, γ̃ being the PPN parameter [56].
For ω = −40000, we find q ≈ 8 and ξ ≈ 5120. It is noteworthy that for r = 2,
the inverse of the parameter ξ does not correspond to the gravitational coupling
constant. This special case matches an accelerated expansion dominated by dark
energy with the equation of state parameter w = γ − 1 = −0.95 and controlled by
the Gauss-Bonnet invariant terms. In Figs. 2 and 3, we plot ω and ξ as given by
Eqs. (10) and (11), respectively.

Besides, the scalar potential is given by V (φ) = φ−2, i.e. freezing (see Figs. 4
and 5).
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Fig. 2 (left). Plot of ω as given by Eq. (10).

Fig. 3. Plot of ξ as given by Eq. (11).

Fig. 4 (left). Plot of the function V (φ) = φ−2 for −1 < φ < 1.

Fig. 5. Plot of the function V (φ) = φ−2 for −4 < φ < 4.

It is noteworthy that the scalar field function F (φ) = φ2 ∝ G−1, where G is
the gravitational coupling constant, i.e. G ∝ φ−2 = t−1, is similar to the Dirac
argument [57]. In fact, there exist many experimental limits on the time variation
of the gravitational constant: radar ranging data to the Viking landers on Mars
[58], lunar laser ranging experiments [59, 60], measurements of the masses of young
and old neutron stars in binary pulsars [61]. In general, it was recently observed
that for late times, a modified cosmology with varying G is in accordance with the
observed values of the cosmological parameters. More generally, in our approach,
the present day variation of G, (Ġ/G)p = H0/q = 3γH+0/(2−2p), thus we expect

that for γ ≪ 1 (w ≈ −1), (Ġ/G)p ≪ 1 as recent astronomical limits suggest that

(Ġ/G)p < 10−13.

In summary, the model described in this paper is interesting and may have
appealing and important consequences on the physics of the early universe. The
behavior of the discussed model is consistent with cosmological observations (e.g.,
Wilkinson Microwave Anisotropy Probe and supernovae test). However, this is a
primitive model. This only shows that such investigations may be useful. Further
consequences are under progress.
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IZMIJENJENA GAUSS-BONNET-BRANS-DICKEOVA KOZMOLOGIJA SA
ZAMRZNUTIM SKALARNIM POTENCIJALIMA

Razmatramo kasnovremensku dinamiku izmijenjene Gauss-Bonnetove gravitacijske
teorije u kojoj prevladavaju zamrznuti skalarni potencijali V (φ) ∝ φ−n, n ∈ R.
Primjećuje se kako za neki izbor parametra n u svemiru prevladava tamna tvar,
ubrzana u vremenu i upravljana Gauss-Bonnetovim invarijantnim članom. K tome
je Brans-Dickeov parametar ω ≫ 1 u skladu s nedavnim izvješćima gdje je ta
granica obnovljena vǐse tisuća puta na osnovi granice za “γ̃ − 1” odred–ene sondom
Cassini, gdje je γ̃ PNP parametar. Vǐse drugih pitanja se postavlja i podrobno
raspravlja.
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