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exhibits interesting late-time dynamics consequences in agreement with recent ob-
servations.
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One of the most remarkable discoveries of our time is the accelerated expansion
of our universe. This fact is supported and based on CMBR dataset of the Three-
Year WMAP observations and results obtained using combined WMAP data and
data from Supernova Legacy Survey of type SNeIa and galaxy clustering. These re-
cent observations suggest that in the standard paradigm, the cosmos is dominated
by a mysterious form of dark energy (DE) with large negative pressure and conse-
quently with negative equation of state parameter (EoSP) w = −1.06+0.13

−0.08 [1 – 7].
The recent observations on baryon oscillations support strongly the DE hypothesis
[8]. Further, these observations suggest that the universe has experienced at least
two stages of accelerated expansion: the early universe inflationary stage and the
present acceleration of the cosmos. The DE problem represents today one of the
most intriguing problems in modern physics. There are strong reasons to believe
that answering this question will have much to do with the possibility to understand
the very early physics. Models of phenomenological DE are abundant ranging from
alternative higher gravity theories [9] to the ΛCDM model [10], quintessence with a
very shallow many-forms inverse power-law potential with EoSP −1 ≤ w ≤ 0 [11],
K-essence [12], viscous fluid [13], Chaplygin gas [14, 15], generalized Chaplygin gas
model [16, 17], Brans-Dicke (BD) theory [18], decaying Higgs fields [19], dilaton
field [20], unstable tachyon field [21, 22] etc. It is worth-mentioning that, using
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the concept of tracking fields, the coincidence and the fine-tuning problems can be
solved. Despite the number of efforts, there is no consistent theory which may ex-
plain the late-time accelerated expansion of the universe and solve the singularity
cosmology at the origin of time, in particular within the context of Friedmann-
Robertson-Walker isotropic homogeneous cosmological model.

Many scientists believe that the resolution of the Big Bang initial singular-
ity problem will come from modifications of the Einstein general relativity (EGR)
due to quantum gravity at the Planck scale, e.g. time-variations of the Newton’s
constant as predicted by some alternative theories of gravity [23] and a number
of modern cosmological models. Many theoretical field theories, such as cosmol-
ogy with extra dimensions, string theories, and scalar-tensor quintessence models
[24], have been proposed and discussed through the literature in which the gravi-
tational coupling parameter is time-dependent. At the moment, the question over
the constancy of the gravitational coupling constant has been revitalized by recent
astronomical observations of distant high-red-shift type Ia supernovae and galaxy
clustering. Since then, many attempts have been made to find astrophysical signs
due to the possible time-variation of the gravitational coupling constant [25].

In this letter, we investigate whether a slow-time dependence of the gravitational
coupling constant can affect the result. There are several phenomenological models
which predict a time-dependence of the gravitational constant. The well-recognized
ones are generally based on a Brans-Dicke coupling theory and are parameterized

as G = G0

(

1+A(t−t0)
)β
, where G0 is the value of the gravitational constant at the

present epoch, i.e. G = G0 for t = t0, β is a real parameter, and |A| ≡ |Ġ0/G0| [26].
The present (late-time) constraints on Ġ ≡ dG/dt can be expressed as follows:

|Ġ/G|p ≈ |β|t−1
p = |β|Hp/m < δ 10−10 yr−1, i.e. |β| < mδ, where δ is a real

parameter constrained from observations. Here we have assumed that Hptp = m,
Hp = 10−10 yr−1 is the present Hubble length and m is constrained by observations
[27]. It was recently shown using the density dependence of the nuclear symmetry
energy, constrained by recent terrestrial laboratory data on isospin diffusion in
heavy-ion reactions at intermediate energies, and the size of neutron skin in 208Pb,
within the gravitochemical heating formalism developed by Jofré et al., that an
upper limit for |Ġ/G|p ≈ (4.5− 21)× 10−12 yr−1 and, therefore, one expects that
|β| is a small parameter [28].

If the cosmological term is constant from the Planck time to the present epoch,
there is the famous cosmological constant problem: the theoretical estimation of
the quantum vacuum energy (the Casimir-like energy density for the whole uni-
verse) gives an enormous large value, whereas the experimentally estimated value
is 120 orders smaller! Such a significantly huge value of the vacuum energy density
represents a big problem in itself, independently of the problem of the accelerated
expansion of the universe. There are dozens of candidates for the solution of this
problem. Unfortunately, most of the approaches found in the literature shift the
problem rather than solve it. To solve this problem, it is thus natural to consider
that the cosmological term decreases from the large value at the early epoch to the
present value. Observing that the cosmological constant has dimension of inverse
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length square, several ansatzes have been proposed in which the cosmological con-
stant decays with time [29]. One interesting ansatz introduced in the literature is
Λ = 3α(ȧ2/a2), where a(t) is the scale factor of the FRW metric and α is a real
constant assumed to be positive [30]. It is worth-mentioning that a non-zero lambda
term helps to reconcile inflation with observation. Moreover, we make another as-
sumption that is common in modern cosmology: the matter density decreases like
ρ = ǫan , n is a real parameter and ǫ = 3/(8πG0) for convenience, e.g. n = 3 for
non-relativistic matter, n = 4 for radiation and n = 0 for the cosmological constant.
Here we assume that n is unknown.

Let us assume a spatially-flat, isotropic and homogeneous FRW space-time de-
scribed by the usual metric ds2 = −dt2 + a(t)2

∑3
i=1(dx

i)2, where a(t) is the scale
factor of the universe. The Friedmann equation ȧ2/a2 = 8πGρ/3 + Λ/3 is written
using the previous ansatzs as

(1− α)
ȧ2

a2
=

(

1 +A(t− t0)
)β

a−n. (1)

The conservation equations for the stress energy-momentum tensor Tµν , i.e.

∇νT
µν = 0 take the usual forms ρ̇ + 3H(ρ + p) = 0 and Λ + 8πĠρ = 0. p and

ρ are, respectively, the pressure and density of the perfect fluid. For a complete
determinacy of the system, we will adopt the equation of state p = wρ, where w
is the EoSP, i.e. ρ̇ + 3H(w + 1)ρ = 0. Although the proper way is to look for
a field phenomenological framework for the variation of the gravitational coupling
constant and the cosmological constant, nevertheless the present approach could be
considered as a limiting case of some covariant theory yet to be discovered. Brans-
Dicke scalar theory is one prototype of these theories but as it is well-known, this
theory allows only a decreasing gravitational constant with the cosmological time.
The solution of Eq. (1) is easily deduced and looks like

a(t) =

{

a
n/2
0 +

n

A(β + 2)
√
1− α

[

(

1 +A(t− t0)
)(β/2)+1 − 1

]

}2/n

, (2)

where a0 = a(t = t0) and α < 1. Equation (2) may be approximated for very large
times by a(t) ∝ tq, q = (2 + β)/n, and therefore the cosmological constant decays
like Λ = α(2+β)2/(n2t2) = 3αH2, while the matter density decays as ρ ∝ t−2−β . It
is noteworthy that the parameter q is to completely dissimilar from the deceleration
parameter q̄ ≡ −äa/a2 which is related to the Hubble parameter H(t) ≡ ȧ/a by
q̄ ≡ −ä/Hȧ = −(q − 1)/q. For q > 1, q̄ < 0 and this match an accelerated
expanding universe for the present epoch. The continuity equations give in their
turn (2+ β)(3(w+1)−n) = 0 and 3βn2 = 2α(2+ β)2 with β /= − 2. For β > 0, we
find α > 0, and therefore the cosmological constant is positive. Accordingly, we find
n = 3(w+1), w /= − 1. As n > 0, we get w > −1, and consequently the universe in
our framework is free from phantom energy. The vacuum energy density is given
by ρv(t) = Λ/(8πG) ≈ α(2 + β)2/(8πG0n

2t2+β) and the density parameter of the
universe is given by Ωm = ρ/ρc ≈ (1 − α)n2/4, (α < 1), where ρc = 3H2/(8πG)
is the critical energy density of the universe. The density parameter due to the
vacuum contribution is given by ΩΛ = Λ/(3H2) = α, and therefore we shall define
ΩTotal = ΩΛ+Ωm ≈ α+(1−α)n2/4. This particular class of solution, with constant
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deceleration factor, sheds light on the cosmological constant problems, leading to a
vacuum parameter ΩΛ = Λ/(3H2) = α, and to a constant ratio between the vacuum
and matter energy densities. Due to the constant ratio between the energy densities
of matter and vacuum, a possible solution for the cosmic coincidence problem, that
is the approximated coincidence presently observed between the matter density
and critical density, may be realized. However, this ansatz presents some problems.
The mainly severe of them is the existence of a constant deceleration factor, i.e.
the universe expansion is uniform, whereas a large structure formation requires a
phase of decelerated phase. For this main reason, one should take into account
this ansatz applicable merely in the limit of late-times, restricting in this way the
predictive power of the model. As suggested from various observations concerning
clusters [30 – 32] the allowed range of the density parameter is 0.2 ≤ Ωm ≤ 0.4,
therefore 0.6 ≤ ΩΛ ≤ 0.8, 0.7 ≤ β ≤ 5.2 and 1.8H2

0 ≤ Λ ≤ 2.4H2
0 , while n = 2

and w = −1/3. The above mentioned observations restrict the dimensionless age
parameter Hptp (which is 2/3 in the standard flat FRW model) to the interval
1.35 ≤ Hptp = m ≤ 3.65, which should be compared with the rather conservative
bounds 0.6 ≤ Hptp ≤ 1.4, adopted in Ref. [33]. The model, therefore predicts that
the minimum age of the universe is 1.35H−1

p .

As we expect β to be a tiny parameter, we choose β ≈ 0.7, for which G(t) ∝ t0.7,
ρ ∝ t−2.7, Λ ∝ t−2 and a(t) ∝ t1.35. The universe at this stage is accelerated in
time, dominated by dark energy with EoSP w = −1/3, a decaying lambda, a
decaying matter density and a slowly increasing gravitational coupling constant.
For these ranges of β, the present day variation of G, (Ġ/G)p ≈ 0.5Hp per year is
in agreement with recent astronomical data [34]. Using the previous numerical data,
the rate of particle creation/annihilation defined by N ≡ a−3

p

(

dρa3/dt
)

p
is N =

1.35ρpHp less than that of the steady state model
(

3ρpHp

)

[35]. It is noteworthy
that for α = 0, i.e. cosmology free from the cosmological constant, β = 0, n = 2,
w = −1/3, and therefore a(t) ∝ t, ρ(t) ∝ t−2 and G = G0. The universe, for this
particular case, is uniformly expanding in time and is dominated by dark energy.
However, an inflationary solution is obtained for ρ = ǫ = constant, i.e. n = 0, from
which one obtains easily using Eq. (1) the solution a(t) = a0 exp

[

(1 + t)1+β/2 −
1
]

/
[

(1+β/2)
√
1− α

]

. This is a modified inflationary scenario in a sense G(t) ∝ tβ

and Λ(t) = 3αH2, in contrast to the standard inflationary paradigm where G is
constant, Λ(t) = 3H2 and ρ = ǫ = 0.

Let us now determine the variation rate of the gravitational coupling constant at
the present epoch dominated by dark energy. The evolution law G(t) ∝ t0.7 leads to

the present relative variation rate |Ġ/G|p = 0.5H0, which is in good agreement with
recent astronomical observations [28]. Another interesting neoclassical test concerns
the horizon at time t0, the proper distance travelled by light and emitted at t =

t1 → 0, which is given by [36] d(z) = a(t)
tmax
∫

t1→0

dt/a(t) ≈ H−1
0 z, where z = 1− ȧ/a

is the redshift. As long as z increases, the distance increases and there is no event
horizon, i.e. the causal communication between two observers exists. Other kinetic
tests may be derived including the luminosity distance-redshift dL (the ratio of the
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detected energy flux and the apparent luminosity), the angular distance-redshift dA
(the measure of how large objects appear to be) and the look back time-redshift
t1(z = 0 − tmax(z) (the difference between the age of the universe at the present
time and the age of the universe when photons was emitted at redshift z). Following
Ref. [36], it is easy to prove that at larger time: dL ≈ H−1

0 [z + (1 − q)z2/2 + . . .],
dA(z) = dL(z)/(1 + z)2 ≈ zH−1

0 and finally H0(t1 − tmax) ≈ z − (1 + q/2)z2 + . . .,
which are in better agreement with recent available data than the results obtained in
Refs. [36] and [29]. Here q ≡ −äa/a2 is the deceleration parameter. These relations,
in particular the angular distance-redshift and the luminosity distance-redshift are
difficult to test observationally for two main reasons: first, objects of fixed size
like spherical galaxies do not possess sharp edges used in practice for measuring
angular size and, consequently, one has rather to measure isophotal diameters,
while objects with well-defined linear dimensions such as double radio sources, are
highly dynamical and as a result their intrinsic size is unknown. Therefore, these
neoclassical tests are in fact difficult to use in practice [37, 38].

In summary, we have analyzed in this short communication the effect of the
assumed phenomenological growing law for the gravitational coupling constant G =

G0

(

1+A(t− t0)
)0.7

on the late-time dynamics of the universe. We have found that
the universe is spatially flat and undergoing a late-time accelerated expansion.
This acceleration has been attributed to a dark energy component with negative
pressure which can induce repulsive gravity. The matter density decays like ρ ∝ a−2

in contrast to the standard FRW model. Regardless of the simple analysis we
made about the observational limits for the age and matter density parameters,
a supplementary comprehensive analysis of the whole set of current observational
data is still in order. A careful study of the whole scenario constitutes the subject
of a forthcoming publication.
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KASNODOBNI KOZMOLOŠKI MODEL SA SPORORASTUĆOM
GRAVITACIJSKOM KONSTANTOM I OPADAJUĆOM GUSTOĆOM

VAKUUMSKE ENERGIJE

Razmatra se jednostavna kozmologija s rastućom Newtonovom konstantom
potaknuta Brans-Dickeovom teorijom vezanja i opadajućom gustoćom vakuumske
energije u ravnom svemiru. Unatoč jednostavnosti modela, pokazuju se zanimljivi
ishodi kasnodobne dinamike, u skladu s nedavnim opažanjima.
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