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in the framework of Lyra manifold with pressure equal to energy density (p = ρ).
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1. Introduction

Weyl [1] proposed a modification of Riemannian manifold in order to unify
gravitation and electromagnetism, but this theory was not accepted due to the
non-integrability of length transfer. Later Lyra [2] proposed an additional modi-
fication of Riemannian geometry. In this theory, he introduced a gauge function,
which removes the non-integrability condition of a vector under parallel transport.
Subsequently, Sen [3] and Sen and Dunn [4] proposed a new scalar-tensor theory of
gravitation based on Lyra geometry. Halford [5] found that energy-conservation law
does not hold in the cosmological theory based on Lyra geometry. Halford [6] showed
that the scalar-tensor theory of gravitation in Lyra manifold predicts the same ef-
fects within observational limits, as in the Einstein theory. Mohanty and Panigrahi
[7] discussed the relation between Einstein’s theory of gravitation and scalar-tensor
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theory of Sen and Dunn. Various authors (Bhamra [8], Karade and Borkar [9], Bee-
sham [10, 11], Reddy and Venkateswaralu [12], Singh and Singh [13, 14], Singh and
Desikan [15], Rahaman and Bera [16], Rahaman et al. [17], Reddy [18]) constructed
different four-dimensional cosmological models in Lyra manifold. Rahaman et al.
[17, 19] Singh et al. [20] and Mohanty et al. [21] constructed various five-dimensional
cosmological models in Lyra manifold.

In this paper we obtained exact solutions of vacuum field equations in Lyra
geometry. Further the exact solutions of the field equations are obtained when the
source of gravitation is a stiff fluid.

In Section 2, we obtain the field equations based on Lyra manifold. In Section
3, we derive the explicit exact solutions of the field equations for vacuum model
and stiff fluid model. In Section 4, some physical and geometrical features of the
models are discussed.

2. Metric and field equations

The Einstein’s field equations based on Lyra’s manifold as proposed by Sen [3]
and Sen and Dunn [4] in normal gauge may be written as

Rik −

1

2
gikR+

3

2
φiφk −

3

4
gikφmφm = −χTik , (1)

where φi is the displacement vector and other symbols have their usual meanings in
the Riemannian geometry. Here we consider the four-dimensional Bianchi type-V
metric in the form

ds2 = dt2 − a21dx
2
− a22e

−2mxdy2 − a23e
−2mxdz2 . (2)

The energy-momentum tensor for perfect fluid distribution is taken as

Tik = (p+ ρ)uiuk − pgik , (3)

together with the co-moving co-ordinates

gikuiuk = 1 , (4)

where p and ρ are the isotropic pressure and the energy density of the cosmic fluid
distribution, respectively, and ui is the four-velocity vector of the fluid which has
components (1, 0, 0, 0).

The displacement vector φh is defined as

φh = (β(t), 0, 0, 0) . (5)

The field Eqs. (1) together with Eqs. (3), (4) and (5) for the metric (2) yield the
following explicit equations

ä2
a2

+
ä3
a3

+
ȧ2ȧ3
a2a3

−

m2

a21
+

3

4
β2 = −χp , (6)
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ä1
a1

+
ä3
a3

+
ȧ1ȧ3
a1a3

−

m2

a21
+

3

4
β2 = −χp , (7)

ä1
a1

+
ä2
a2

+
ȧ1ȧ2
a1a2

−

m2

a21
+

3

4
β2 = −χp , (8)

ȧ1ȧ2
a1a2

+
ȧ2ȧ3
a2a3

+
ȧ3ȧ1
a3a1

−

3m2

a21
−

3

4
β2 = χρ , (9)

and
2ȧ1
a1

=
ȧ2
a2

+
ȧ3
a3

. (10)

3. Solution of the field equations

3.1. Vacuum model

In the vacuum model (p = 0 and ρ = 0), the field Eqs. (6) to (10) reduce to

ä2
a2

+
ä3
a3

+
ȧ2ȧ3
a2a3

−

m2

a21
+

3

4
β2 = 0 , (11)

ä1
a1

+
ä3
a3

+
ȧ1ȧ3
a1a3

−

m2

a21
+

3

4
β2 = 0 , (12)

ä1
a1

+
ä2
a2

+
ȧ1ȧ2
a1a2

−

m2

a21
+

3

4
β2 = 0 , (13)

ȧ1ȧ2
a1a2

+
ȧ2ȧ3
a2a3

+
ȧ3ȧ1
a3a1

−

3m2

a21
−

3

4
β2 = 0 , (14)

and

a2a3 = a21 . (15)

Subtracting Eq. (11) from Eq. (12), we get

ä1
a1

−

ä2
a2

+
ȧ1ȧ3
a1a3

−

ȧ2ȧ3
a2a3

= 0 . (16)

Rearranging Eq. (16), we obtain

d

dt

(

ȧ1
a1

−

ȧ2
a2

)

+

(

ȧ1
a1

−

ȧ2
a2

)(

ȧ1
a1

+
ȧ2
a2

+
ȧ3
a3

)

= 0 . (17)
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Following Saha [22], we consider here v as a function of t defined by

v = a1a2a3 . (18)

From Eq. (18), we get
v̇

v
=

ȧ1
a1

+
ȧ2
a2

+
ȧ3
a3

. (19)

Substituting the value of v̇/v in Eq. (17), we find

d

dt

(

ȧ1
a1

−

ȧ2
a2

)

+

(

ȧ1
a1

−

ȧ2
a2

)

v̇

v
= 0 . (20)

The above Eq. (20) is of the form

dy

dt
+ p(t)y = Q(t) , (21)

which is a linear differential equation of the first order. Now integrating Eq. (20),
we obtain

a1
a2

= d1 exp

(

x1

∫

dt

v

)

, (22)

where d1 and x1 are constants of integration.

Subtracting Eq. (11) from Eq. (13), we get

ä1
a1

−

ä3
a3

+
ȧ1ȧ2
a1a2

−

ȧ2ȧ3
a2a3

= 0 . (23)

Rearranging Eq. (23), we obtain

d

dt

(

ȧ1
a1

−

ȧ3
a3

)

+

(

ȧ1
a1

−

ȧ3
a3

)(

ȧ1
a1

+
ȧ2
a2

+
ȧ3
a3

)

= 0 . (24)

Now using Eq. (19) in Eq. (24) we get

d

dt

(

ȧ1
a1

−

ȧ3
a3

)

+

(

ȧ1
a1

−

ȧ3
a3

)

v̇

v
= 0 . (25)

Integrating Eq. (25) we obtain

a1
a3

= d2 exp

(

x2

∫

dt

v

)

, (26)

where d2 and x2 are constants of integration.
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Subtracting Eq. (12) from Eq. (13), we get

ä2
a2

−

ä3
a3

+
ȧ1ȧ2
a1a2

−

ȧ1ȧ3
a1a3

= 0 . (27)

Rearranging Eq. (27) we find

d

dt

(

ȧ2
a2

−

ȧ3
a3

)

+

(

ȧ2
a2

−

ȧ3
a3

)(

ȧ1
a1

+
ȧ2
a2

+
ȧ3
a3

)

= 0 . (28)

Using Eq. (19) in Eq. (28) we obtain

d

dt

(

ȧ2
a2

−

ȧ3
a3

)

+

(

ȧ2
a2

−

ȧ3
a3

)

v̇

v
= 0 . (29)

Integrating Eq. (29) we get

a2
a3

= d3 exp

(

x3

∫

dt

v

)

, (30)

where d3 and x3 are constants of integration.

From Eqs. (22), (26) and (30), we find the relation between the constants d1,
d2, d3 and x1, x2, x3 as

d1d3 = d2, and x1 + x3 = x2 . (31)

Equations (22), (26) and (30) with the help of Eqs. (15) and (18) reduce to

a1(t) = D1 v
1/3 exp

(

X1

∫

dt

v(t)

)

, (32)

a2(t) = D2 v
1/3 exp

(

X2

∫

dt

v(t)

)

, (33)

and

a3(t) = D3 v
1/3 exp

(

X3

∫

dt

v(t)

)

, (34)

where Di (i = 1, 2, 3) and Xi (i = 1, 2, 3) satisfy the relations

D1D2D3 = 1, and X1 +X2 +X3 = 0 .

Using Eqs. (32), (33) and (34) in Eq. (15) we get

D2D3

D1

= exp

[

(X2 +X3 − 2X1)

∫

dt

v(t)

]

= 1 . (35)
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Since X1 +X2 +X3 = 0, Eq. (35) yields

D2D3

D1

= exp

[

(−3X1)

∫

dt

v(t)

]

= 1 .

PutX1 = 0 in above equation, we get the relationD2D3 = D2
1, but fromD1D2D3 =

1, we obtain D3
1 = 1.

Therefore, we can take

D1 = 1, X1 = 0, X2 = −X3 = X and D2 = D−1
3 = D ,

where D1, D2, D3 and X1, X2, X3 are constants of integration.

Finally, we write Eqs. (32), (33) and (34) as

a1(t) = v1/3 , (36)

a2(t) = Dv1/3 exp

(

X

∫

dt

v(t)

)

, (37)

and

a3(t) = D−1v1/3 exp

(

−X

∫

dt

v(t)

)

, (38)

where X and D are constants of integration.

Adding Eqs. (11), (12) and (13) with 3-times Eq. (14), we get

2

(

ä1
a1

+
ä2
a2

+
ä3
a3

)

+ 4

(

ȧ1ȧ2
a1a2

+
ȧ2ȧ3
a2a3

+
ȧ3ȧ1
a3a1

)

−

12m2

a21
= 0 , (39)

i.e.
(

ä1
a1

+
ä2
a2

+
ä3
a3

)

+ 2

(

ȧ1ȧ2
a1a2

+
ȧ2ȧ3
a2a3

+
ȧ3ȧ1
a3a1

)

−

6m2

a21
= 0 . (40)

From Eq. (18) we get

v̈

v
=

(

ä1
a1

+
ä2
a2

+
ä3
a3

)

+ 2

(

ȧ1ȧ2
a1a2

+
ȧ2ȧ3
a2a3

+
ȧ3ȧ1
a3a1

)

. (41)

Substituting Eq. (41) in Eq. (40) we find

v̈

v
−

6m2

a21
= 0 . (42)

From Eqs. (15) and (18) we get

a1 = v1/3 . (43)
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Using Eq. (43) in Eq. (42) we obtain

v̈ = 6m2v1/3 . (44)

Equation (44) can now be written as

v̇dv̇ = 6m2v1/3dv . (45)

Integrating Eq. (45), we get

v̇2 = 9m2v4/3 + c1 . (46)

Taking square root of both sides of Eq. (46), we get

v̇ =
√

9m2v4/3 + c1 . (47)

For simplicity, we take c1 = 0. Now Eq. (47) reduces to

v̇ =
√

9m2v4/3 . (48)

Integrating Eq. (48) we obtain

v = m3t3 + t0 , (49)

where the integration constant t0 can be taken to be zero, since it only gives shift
in time.

Substituting the value v = m3t3 in Eqs. (36), (37) and (38), we obtain

a1(t) = mt , (50)

a2(t) = Dmt exp

(

−

X

2m3t2

)

, (51)

and

a3(t) = D−1mt exp

(

X

2m3t2

)

. (52)

Using Eqs. (50), (51) and (52) in Eq. (14) we find

β2 = −

4

3

X2

m6
t−6 . (53)

Equation (53) indicates that value of β2 is negative which is acceptable. Halford
[5] showed that β2 can be considered as positive or negative for various realistic
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physical situations. At initial epoch t = 0, β → ∞, and as t → ∞, β → 0. Thus
the concept of Lyra geometry will not remain for a very long time.

In this case, the metric (2) takes the form

ds2 = dt2 −m2t2dx2
−D2m2t2 exp

(

−

X

m3t2
− 2mx

)

dy2

+D−2m2t2 exp

(

X

m3t2
− 2mx

)

dz2 , (54)

3.2. Stiff fluid model (Zel’dovich model)

In this case p = ρ. Then the field Eqs. (6) to (10) reduce to

ä2
a2

+
ä3
a3

+
ȧ2ȧ3
a2a3

−

m2

a21
+

3

4
β2 = −χρ , (55)

ä1
a1

+
ä3
a3

+
ȧ1ȧ3
a1a3

−

m2

a21
+

3

4
β2 = −χρ , (56)

ä1
a1

+
ä2
a2

+
ȧ1ȧ2
a1a2

−

m2

a21
+

3

4
β2 = −χρ , (57)

ȧ1ȧ2
a1a2

+
ȧ2ȧ3
a2a3

+
ȧ3ȧ1
a3a1

−

3m2

a21
−

3

4
β2 = χρ , (58)

and
2ȧ1
a1

=
ȧ2
a2

+
ȧ3
a3

. (59)

In this case the values of a1, a2 and a3 are the same as obtained in the vacuum
model. However, it is not possible to obtain the values of ρ and β separately for
this model. From Eq. (58), the value of ρ in terms of β is obtained as

ρ = p =
1

χ

[

−

3

4
β2

−

X2

m6t6

]

. (60)

The energy density satisfies the reality condition (ρ > 0) for −
3

4
β2 >

x2

m6t6
. Also,

ρ → −

3

4
β2 as t → ∞, which indicates that ρ is positive because β2 is negative.
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4. Some physical and geometrical features of the model

In this section we study the following physical and geometrical features of the
models obtained in the preceding sections. The energy density (ρ) for the model
(54) is obtained as

ρ = p =
1

χ

[

−

3

4
β2

−

X2

m6t6

]

.

At initial epoch t = 0, the energy density ρ → ∞ which indicates that the model
possesses initial singularity. As t → ∞, ρ → −(3/4)β2, this indicates that the
model is guided by the gauge function β for any t except t = 0.

The scalar expansion θ is calculated as

θ =
1

3
ui
;j =

3

t
.

It is observed here that θ is always positive. Therefore, the model describes a
physically realistic expanding model. At initial epoch t = 0, the scalar expansion θ
diverges. The scalar expansion θ vanishes for large t.

The shear scalar σ2 for the model (54) is obtained as

σ2 =
1

2
σijσij =

X2

m6t6
+

3

2t2
−

1

t
+

1

6
.

At initial epoch t = 0, shear scalar diverges. As t increases, σ2 gradually decreases.
However σ2

→ 1/6 as t → ∞.

Since limt→∞ σ2/θ2 /=0, the model is not isotropic for large t.

The spatial volume of the model is obtained as

v = m3t3 .

At initial epoch t = 0, v = 0. As the time increases the volume increases and
v → ∞ as t → ∞.

The deceleration parameter (q) is obtained as

q = −

2

3
.

It is evident that the model (54) represents an inflationary cosmological model.

5. Conclusion

In this paper we constructed the Bianchi type-V stiff-fluid cosmological model
in the framework of Lyra manifold. We observe that the model (54) is inflationary,
non-isotropic and possesses initial singularity.
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BIANCHIJEV KOZMOLOŠKI MODEL TIPA V U LYRINOJ
MNOGOSTRUKOSTI

Razmatramo Bianchijev prostor-vrijeme tipa V uz prisutnost perfektne tekućine u
okviru Lyrine mnogostrukosti i jednak tlak i gustoću energije (p = ρ). Raspravljaju
se neke fizičke i geometrijske odlike modela.
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