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Two of the greatest problems in theoretical physics today are the accelerated ex-
pansion of the universe and the singularity problem at the origin of time. This crisis
has been attacked head on, but no convincing, well-developed and well-motivated
solutions have emerged. While much work in literature has focused on the search for
new matter sources that yield accelerating solutions, and to avoid concurrently the
initial singularity, more recently complementary approach of examining whether
alternative theories of gravity might be responsible for cosmic acceleration and
whether the singularity problem may be avoided was developed. The work done in
this paper is just a kind of the simple modified gravitational physics to solve both
problems simultaneously. In the present work, we analyze all kinematic expressions
for a closed but effectively flat universe when the cosmological constant and the
matter density decays, respectively, like Λ = C ä/a and ρ(a) = βG−1(a)a−2/(8π),
where C and β are real positive parameters, a(a) is the scale factor and G is the
gravitational coupling constant which is assumed to depend on the scale factor as
predicted by several models. It is found for some constrained parameters that the
universe is closed but effectively flat, free from the initial singularity, dominated by
dark energy and is accelerated in time. Expressions for some observable quantities
were derived and are found to be compatible with available recent astrophysical
findings.
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1. Introduction: The recent available astronomical

observations favour a spatially flat universe undergoing a

phase of accelerated expansion

The recent available astronomical observations favour a spatially flat universe
undergoing a phase of accelerated expansion, dominated by a mysterious form of
repulsive energy dubbed dark energy (DE) violating the strong energy condition
and can be represented with a good approximation by a homogeneous Friedmann-
Robertson-Walker (FRW) model [1 – 7]. Recent observations of more than 50 types
SNeIa with redshift in the range −0.10 ≤ z ≤ 0.83 strongly favour a positive
but tiny lambda with negative equation of state parameter (EoSP), i.e. negative
pressure [8 – 12].

Many models were build to explain these facts, including the ΛCDM which
consists of a mixture of the cosmological constant Λ and CDM or WIMPS [13], K-
essence with modified kinetic energy [14 – 17], Chaplygin gas [18 – 23], generalized
Chaplygin gas model [24 – 26], holographic dark energy [27 – 29], varying massive
neutrinos mass [30, 31], quintom field [32 – 34] and so on. Despite the fact that
most of these theoretical models possess many advantages in the explanation of the
cosmological accelerated expansion, most of them are based on a particular choice
of the scalar field potential and they predict degenerate luminosity distance history
of the universe and thus cannot be distinguished by supernovae measurements
alone. However, many theorists still hope to explain the problem without invoking
the existence of scalar fields. Although significant efforts have been devoted for
this attempt, we still have not succeeded yet to provide convincing cosmological
models. However, the rapid progress of alternative theories of gravity coming from
string/M-theory (extra-dimensional theories (10D) including braneworld models
(5D)) has provided a new perspective for solving many of the cosmological problems,
in particular the cosmological constant problem [35]. A deeper insight into DE may
lead to interesting results which may be derived from extra-dimensional dynamical
compactification theories (from 10D string theory to 4D spacetime). In other words,
as has been emphasized, the 4D spacetime could have been preceded by a higher-
dimensional spacetime compactified by a certain physical mechanism similar to the
3-brane world mechanisms where Standard Model matter fields are confined to a
4D membrane embedded in a higher-dimensional spacetime without conflict with
observations [36, 37]. In brief, cosmological theories with extra-dimensions are of
great importance in cosmology. In this paper, extra-dimensions will be our main
concern.

Further, observing that the cosmological constant has dimension of inverse
length square, several ansatzs have been proposed in which the cosmological con-
stant decays with time [38, 39]. One of the motivations for introducing a decaying-
lambda is to reconcile the age parameter and the density parameter of the universe
with recent observational data. Since spacetime was strongly curved at early times
(Planck times), one naturally expects an initial huge value of the cosmological con-
stant of the order of l−2

P = G−1, G is the gravitational coupling constant. As the

270 FIZIKA B (Zagreb) 19 (2010) 4, 269–282



el-nabulsi: higher-dimensional non-singular cosmology dominated by . . .

universe expands in time, the cosmological constant should decay, thereby leading
to the tiny value observed presently. Therefore, if the vacuum density decays with
time, one should expect that the gravitational constant varies also with time. The
variation of G is also expected if we consider it a renormalized coupling constant
of a quantum theory of gravity [40]. It should be mentioned that models with vari-
ation of Λ and G simultaneously have been discussed in literature [41]. Within the
structure of extra-dimensions, the decaying of the effective cosmological constant
plays a vital role [42 – 47].

One of the interesting ansatzs introduced in the literature is Λ ∝ ä/a, where a
is the scale factor of the FRW metric [48]. It has been discussed by several authors
in literature [38, 39, 49 – 54].

In this paper we discuss many interesting features of this phenomenological de-
caying law within the framework of higher-dimensional spacetime. By making the
assumption that the extra-dimensions compactify as the visible dimensions expand
like, the phenomenological law Λ ∝ ä/a may explain why the effective cosmological
constant is reduced from a large value at early times to a sufficiently small value at
late times in agreement with the observational upper limit. In this work we make
another assumption that is common in modern cosmology: the matter density de-
creases like ρ ∝ G−1(a)a−2 as we accept in this paper the fact that the gravitational
constant varies in time and thus depends on the scale factor. Our main aim in this
work is to explore the cosmological consequences of the above assumptions on the
evolution of the extra-dimensional world. We look up for the general solution of the
scale factor and the gravitational coupling constant. Further, we discuss whether
the results obtained agree with the observed accelerating universe and we hunt for
the equation of state parameter of the present model. Many cosmological tests are
discussed in some details.

2. Setup: Action, equations of motion and cosmological

solutions

We consider the (n + 2)-dimensional homogeneous universe described by the
combination of the standard (1 + 3) FRW metric and n extra dimensions as [54]

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ21 + sin2 θ1dθ

2
2 + . . .+ sin2 θn−1dθ

2
n)

]
, (1)

where γ̃pq is the maximally symmetric metric in n-dimensions. For the perfect fluid
distribution, the Einstein field equations with the effective cosmological constant
and gravitational constant may be written as

Rij −
1

2
gijR+ Λeffective gij = −8πGTij = −8πG

[
(p+ ρ)uiuj − pgij

]
, (2)

where G is the higher-dimensional gravitational coupling constant, p and ρ are, re-
spectively, the pressure and density of the cosmic perfect fluid and finally gij is the
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metric tensor. The variations of the gravitational constant, the cosmological con-
stant and the fluid density in cosmological time will in turn influence the expansion
of the universe through the generalization of the Friedmann equations which take
the form

n(n+ 1)

2

[
ȧ2

a2
+

k

a2

]
= 8πG(a)ρ(a) + Λ(a) , (3)

n
ä

a
+

n(n− 1)

2

[
ȧ2

a2
+

k

a2

]
= −8πG(a)p(a) + Λ(a) . (4)

k = 0,±1 is the curvature parameter. The Bianchi identity

(
Rµν −

1

2
gµνR

)

;µ

= −
(
8πGTµν + Λgµν

)
;µ

= 0 (5)

leads to [55]

ρ̇+ (n+ 1)(p+ ρ)
ȧ

a
= 0 , (6)

Λ̇ + 8πĠρ = 0 . (7)

In fact, we followed Berman’s idea and we conjecture that the variation of Λ is
cancelled by the variation of the gravitational coupling constant. It is notable here
that our approach suffers from a lack of Lagrangian approach. There is no rec-
ognized way to present a consistent Lagrangian cosmological model satisfying the
necessary conditions discussed in the paper. As stated previously, we will adopt
the phenomenological decay laws: Λ = C ä/a and ρ(a) = βG−1(a)a−2/(8π), where
C and β are real positive parameters. Overdin and Cooperstock [34] have pointed
out that the model with Λ ∝ H2 is equivalent to Λ = C ä/a [48]. For a com-
plete determinacy of the system, we will adopt the EoS p = γ(t)ρ, where γ(t) is a
time-dependent parameter. It is noteworthy that quintessence cosmological mod-
els involving scalar fields give rise to time-dependent equation of state parameter
(EoSP) [56 – 65]. Consequently, Eqs. (3) and (4) take the forms

aä−
n(n+ 1)

2C
ȧ2 =

1

C

[
n(n+ 1)k

2
− β

]
, (8)

γ(t) = −
n(n+ 1)

2β
ȧ2 +

C − n

β
aä−

n(n− 1)k

2β
. (9)

The first integral of Eq. (8) is

ȧ2 = Ean(n+1)/C − 2

[
k

2
−

β

n(n+ 1)

]
, (10)

where E is an integration constant. Following the arguments of Refs. [51, 54], the
constantβ plays the role of the curvature parameter k. Accordingly, an interesting
non-singular solution sorting from Eq. (10) for some range of parameters may be
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obtained if we assume that 2β = n(n+1)k which is given by a(t) = (A+MDt)1/M ,
where A and D are integration constants, M = 1 + ω and ω = −n(n+ 1)/(2C) =
−βk/C /= − 1. Notice that for 2C > n(n + 1), we get 0 < M < 1 and 2 ≤
n <

(√
4C + 1 − 1

)
/2, i.e. C ≥ 6. This shows that there is a possibility of the

universe passing through a minimum at the origin of time. In this context, the
effective curvature parameter depends on the number of extra-dimensions through
the relation keffective = 2β/(n(n + 1)). In other words, the universe is closed but
effectively flat. Consequently, the cosmological constant decays like

Λ =
CD2(1−M)

(A+MDt)2
≈ CMD3(1−M)t−2 (11)

for large time and thus a positive cosmological constant corresponds to M < 1, i.e.
ω < 0, and consequently k > 0 (closed spacetime). The cosmological constant is a
decreasing function of time, non-singular at t = 0 (large value it might have had)
and approaches a small positive value at the present epoch, i.e. at t = t0. At the
origin of time, Λ0 = CD2(1−M)/A and thus Λ = Λ0(A+MDt)−2. The equation
of state parameter in its turn behaves as

γ(t)=

(
2(C−n)(n+1)

2C
−n+1

)
2CD2

(n+1)k(2CA+(2C−n(n+1))Dt)−2βk/(C−βk)
−
n−1

n+1
.

(12)
For 0 < M < 1, β > 0 and C < βk, the universe is non-singular and is accelerating
in time and the equation of state parameter decreases in time and tends for very
large time to γ = (1−n)/(1+n) > −1, i.e. the universe is dominated by dark energy.
For very large n, γ → −1, which corresponds to the famous cosmological constant.
Thus, the present accelerated expansion of the universe may be attributed to the
ever growing gravity and to the ever decreasing of the matter density through the
law ρ(a) = βG−1(a)a−2/(8π) and not only to the presence of phantom energy.

Substituting Eq. (11) in Eq. (7), one gets easily

G = G0 exp

{
CD2M

β

[
(A+MDt)2(1−M)/M − 1

]}
, (13)

which corresponds to an ever-increasing gravitational constant. Here G0 = G(t =
0). The perfect fluid density decays consequently like

ρ(t)=ρ(0)

(
A

A+MDt

)2/M

exp

{
−
CD2M

β

[
(A+MDt)2(1−M)/M−A2(1−M)/M

]}
,

(14)
with ρ0 = ρ(t = 0). Thus, the density decreases exponentially in time. It is worth
mentioning, the form of G represented by Eq. (13) is obtained within the framework
of the quantum corrections to the gravitational potential, in particular in the finite
grand unified theories (GUTs) [66]. It is interesting to find an exponential decrease
of the matter density while the universe is expanding as a power-law and not
exponentially.
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The density parameter due to vacuum contribution is

ΩΛ =
2Λ

n(n+ 1)H2
=

2C(1−M)

n(n+ 1)
, (15)

where H = ȧ/a is the Hubble parameter. The density parameter of the universe in
contrast is given by

Ωm =
16πGρ

n(n+ 1)H2
=

2β

n(n+ 1)ȧ2
=

2β

n(n+ 1)D2(A+MDt)2(1−M)/M
, (16)

which tends to zero at large times and as a result, the universe is vacuum-
dominated. As pointed previously, astrophysical measurements indicate the ex-
pansion of the universe is accelerating with time. The energy density is dominated
by a vacuum density with ΩΛ = 0.7. At late times, the scale factor tends to infinity
and consequently the radiation and matter energy density are driven to zero by the
accelerated expansion of the spacetime. It is thus natural that Ωm → 0 as a → ∞.
Thus our universe is simultaneously closed and asymptotic to a de Sitter space. A
vacuum-dominated closed Friedmann universe was found to play a crucial role in
holographic theory [67, 68].

For the illustration purpose, we plot the variations of the scale factor (Fig. 1), the
energy density (Fig. 2), the equation of state parameter (Fig. 3), the cosmological
constant (Fig. 4) and the gravitational coupling constant (Fig. 5) with time and
for different values of n. Notice that for k = 1, we get 3 ≤ β < C/2. To do this, we
choose A = D = 1, C = 20, and β = 3, i.e. 2 ≤ n < 4 or (a) n = 2 (4D) and (b)
n = 3 (5D).

Fig. 1. Plot of the scale factor a(t) = (A+MDt)1/M for A = D = 1, C = 20, and
β = 30, (a) n = 2, a(t) = (17t/20+1)20/17 (4D) and (b) n = 3, a(t) = (7t/10+1)10/7

(5D).
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Fig. 2. Plot of the energy density ρ(t), Eq. (14), for A = D = 1, C = 20, and

β = 30, (a) n = 2, ρ(t) = exp

[
−

17

600

(
17t

20
+ 1

)16/17

− 1

]{
17t

20
+ 1

}40/17

(4D)

and (b) n = 3 exp

[
−

7

300

(
7t

10
+ 1

)6/7

− 1

]{
7t

10
+ 1

}20/7

(5D).

Fig. 3. Plot of γ(t), Eq. (12), for A = D = 1, C = 20, and β = 30, (a) n = 2,

γ(t) =
68

3(34t+ 40)6
−

1

3
(4D) and (b) n = 3, γ(t) =

14

(34t+ 40)6
−

1

2
(5D).

Fig. 4. Plot of Λ, Eq. (11), for A = D = 1, C = 20, and β = 30, (a) n = 2,

Λ =
60

17t2 + 20
(4D) and (b) n = 3, Λ =

20

4t2 + 5
(5D).
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Fig. 5. Plot of G, Eq. (13), for A = D = 1, C = 20, and β = 30,

(a) n = 2, G = exp

[
17

600

(
17t

20
+ 1

)16/17

− 1

]
(4D) and (b) n = 3, G =

exp

[
7

300

(
7t

10
+ 1

)6/7

− 1

]
(5D).

We may derive now the relationships between the observational parameters,
including the age of the universe, proper and luminosity distances and angular
distance parameter. For the illustration purpose, we choose C = 20. First note
that the age of the universe in the present model is calculated easily from the scale
factor a(t) = (A+MDt)1/M as:

t0 =
1

M

1

H0
−

A

MD
≈

1

M

1

H0
, 0 < M < 1 . (17)

The above mentioned observations restrict the dimensionless age parameter H0t0
to H0t0 > 1. Further, if we adopt the conservative bounds 0.85 <∼ H0t0 <∼ 1.95
[69 – 71], it is easily seen that the present non-singular cosmological model solves
the age conflict if the allowed value of M is constrained to 0.5 <∼ M <∼ 1. For this
range, n is constrained to 2 ≤ n <∼ 4, i.e. n = 2, 3, 4. The value of the cosmological
constant, the density parameter due to vacuum contribution and the deceleration
parameter at the present time, for C = 20, are restricted to satisfy, respectively,

0 < Λ0
<∼

n(n+ 1)H2
0

2
, (18)

0 < ΩΛ0
<∼ 1 , (19)

−0.5 <∼ q0 = M − 1 <∼ −n(n+ 1)/40 , (20)

which are in agreement with recent observational limits.

Another interesting neoclassical test concerns the horizon at time t0, the proper
distance traveled by light and emitted at t = t1which is given by

d(z) = a(t) lim
t1→0

∫
dt

a(t)
≈ H−1

0

1

M − 1

[
1− (1 + z)1−M

]
, (21)
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where 1+z = ȧ/a is the redshift. For small values of z, this equation reduces easily
to

H0d(z) ≈ z −
1

2M
z2 + . . . = z −

1

2(q + 1)
z2 + . . . . (22)

It is observed that for 0.5 <∼ M <∼ 1 and when z → ∞,

d(z) ≈
H−1

0

1−M
(1 + z)1−M ≈

H−1
0

1−M

[
1 + (1−M)z −

M(1−M)

2
z2 + . . .

]
. (23)

As long as z increases, the distance increases and there is no event horizon for M
very close to unity. The thrust of this result is that an observer in a power-law-
expanding non-singular universe sees only events that take place at a distance no
farther away than H−1

0 /(1 − M) ≫ H−1
0 for M <∼ 1, i.e. the causal communica-

tion between two observers exists. Other kinetic tests may be derived including
the luminosity distance-redshift dL (the ratio of the detected energy flux and the
apparent luminosity), the angular distance-redshift dA (the measure of how large
objects appear to be) and the look back time-redshift t1(z = 0)−tmax (the difference
between the age of the universe at the present time and the age of the universe when
photons were emitted at redshift z). Following Ref. [27], it is easy to prove that for
a(t) = (A+MDt)1/M ≈ (MDt)1/M , i.e. larger time,

dL(z) ≈ H−1
0

z + 1

M − 1

[
1− (1 + z)M−1

]
, 0.5 <∼ M <∼ 1 , (24)

dA(z) =
d(z)

1 + z
=

dL(z)

(1 + z)2
, (25)

H0(t1 − tmax) ≈
1

MH0

[
1− (1 + z)−M

]
. (26)

For M <∼ 1 and small redshift, Eqs. (24) – (26) may be approximated to

dL(z) ≈ H−1
0

[
z + 1

2 (1− q)z2 . . .
]
, −0.5 <∼ q <∼ 0 , (27)

dA(z) =
dL(z)

(1 + z)2
≈ zH−1

0 , (28)

H0(t1 − tmax) ≈ z −
(
1 +

q

2

)
z2 + . . . , (29)

which are better approximations to recent available data than the results obtained
in Refs. [54, 72].

These relations, in particular the angular distance-redshift and the luminosity
distance-redshift are difficult to test observationally for two main reasons: first, ob-
jects of fixed size like spherical galaxies do not possess sharp edges used in practice
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for measuring angular size and consequently one has rather to measure isophotal
diameters, while objects with well-defined linear dimensions such as double radio
sources, are highly dynamical and as a result their intrinsic size is unknown. There-
fore, these neoclassical tests are in fact difficult to use in practice [73].

Finally, notes that the main difference between the present work and the one
discussed in Ref. [54] is that in the latter, cosmological implications of the decay
law Λ = C ä/a were analyzed in the framework of higher-dimensional universe
dominated by dust, while in our framework the universe is dominated by dark
energy.

The recent observational available data for an accelerated expansion state of
the present universe, obtained from distant SNeIa gave a strong support to the
search of alternative cosmologies. Recently, there have been a number of different
attempts to modify Einstein’s gravity to yield accelerated expansion at late times.
Unfortunately, many of the theoretical models discussed in literature are plagued
with theoretical problems, in particular the singularity problem at the origin of
time.

3. Conclusions

In the present work we have analyzed all kinematic expressions for a closed
but effectively flat universe when the cosmological constant an the matter density
decays, respectively, like Λ = C ä/a and ρ(a) = βG−1(a)a−2/(8π). As shown
in this work, these decay laws represents interesting elements accounting for this
unexpected observational result. It was found that the universe is non-singular at
the origin of time and is dominated by dark energy with equation of state parameter
depending on the dimensionality through the relation γ = −(n − 1)/(n + 1). At
large times, the cosmological constant decays to zero from an initially large value
it might have had in the early past. The dynamics is accompanied with ever-
increasing gravitational constant where the present relative variation rate found is
in agreement with recent astrophysical data. It is worth-mentioning that the form
of the gravitational constant found in this work is obtained in finite grand unified
theories (GUTs). The exponential decay of the matter density leads generically to
Ωm0 ≈ 0 at late times and thus provides a possible solution to the “Ω-problem” for
low density cosmological scenarios. In contrast to arguments sorting from quantum
cosmology, our model does not predict a2ρ(a) = constant for a time-dependent
cosmological constant. The product is constant only at the origin of time.

Kinematic tests, like luminosity distance, angular diameter and look-back time-
redshift constrain perceptively the decaying laws introduced in this work. By mak-
ing the assumption that the extra-dimensions compactify as the visible dimensions
expand, we found that dark energy is needed for the dynamical suppression. The
model is free from phantom fields and free from the naked initial singularity in
the course of its evolution, i.e. the behaviour of the scale factor is given by the
expression a(t) = (A+MDt)1/M , 0.5 <∼ M <∼ 1. The horizon distance is infinite at
the initial time and no horizon problem appears in this special case. The structure
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formation problem deserves a special attention and deeper investigations in the
future.

The model presented here constitutes in our opinion a very interesting and
appealing alternatives to the standard FRW cosmological scenario with an initial
singularity, which seems to be eliminated in our framework. However, the initial
singularity problem remains a serious problem in cosmology to build a valid cos-
mology at any period of time. There are some indications that theories like string
and superstring may lead to non-singular cosmological models. It will be of interest
to explore in the future the effects of the decaying laws presented here in those
fundamental theories [74 – 82]. Further consequences and numerical tests are under
progress.
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VIŠEDIMENZIJSKA NESINGULARNA KOZMOLOGIJA U KOJOJ
PREVLADAVA PROMJENLJIVA KOZMOLOǨA KONSTANTA

Dva med–u najvećim problemima današnje teorijske fizike su ubrzano širenje svemira
i singularnost u njegovu početku. Ti su problemi žestoko napadnuti, ali još nisu
iskrsnula uvjerljiva, te dobro osnovana i razvijena rješenja. Dok su objavljeni
mnogi radovi koji se usredotočuju na traženje novih vrsta tvari koje daju rješenja s
ubrzanim širenjem i istovremenim izbjegavanjem početne singularnosti, u nedavno
se vrijeme razvijaju dodatni pristupi u istraživanju jesu li druge teorije gravitacije
odgovorne za ubrzanje svemira i može li se izbjeći problem singularnosti. Ovaj
je rad upravo drugi pristup kako bi se jednostavnom izmijenjenom gravitacijskom
fizikom oba problema istovremeno riješila. Analiziramo sve kinematičke izraze za
zatvoren ali u biti ravan svemir, pretpostavljajući da svemirska stalnica i gustoća
tvari opadaju kao Λ = C ä/a odnosno ρ(a) = βG−1(a)a−2/(8π), gdje su C i β
realni pozitivni parametri, dok je a(t) množitelj sumjernosti a G gravitacijska stal-
nica vezanja za koju se pretpostavlja da ovisi o a(t) kao u vǐse modela svemira.
Nalazimo za neka ograničenja parametara da je model svemira zatvoren ali u biti
ravan, bez početnog singulariteta, u kojemu prevladava tamna tvar i ubrzan je u
vremenu. Izveli smo izraze za neke veličine koje se mogu promatrati i nalazimo da
su usklad–eni s dostupnim nedavnim astrofizičkim nalazima.
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