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We discuss pion distributions resulting from a Gaussian random nucleon source.
Connection with a chaotic–coherent mixture, the negative–binomial distribution,
and the Koba–Nielsen–Olesen scaling is derived.

1. Introduction

The central question in soft hadronic processes (low-pT hadrons) and at the
same time a long-standing one is to explain why the charged-particle multiplicity
distributions Pn(s) in pp collisions exhibit the Koba–Nielsen–Olesen (KNO) scal-
ing [1] only in the ISR energy range (

√
s = 20 - 65 GeV).

A number of other quantities measured in pp collisions, such as [2] 〈pT 〉, σel/σtot
and B/σtot, where B is the slope of the diffraction peak, also show approximate
energy independence only in the ISR energy range. The constant σel/σtot is usually
referred to as geometrical scaling (GS) [3]. Without a satisfactory answer to these
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question it is not possible to fully understand the observed violation [4] of the KNO
scaling and the increase of σel/σtot with energies in the range

√
s > 100 GeV.

In the framework of the eikonal formalism [5] it is usually assumed that the
multiplicity distributions Pn(b, s) at fixed b satisfy the KNO scaling. Then the
KNO scaling of Pn(s) follows under the assumption of the geometrical scaling,
namely that σinel(b, s) and n(b, s)/n(s) depend only on the scaled impact parameter
b(s) = b/R(s).

Recently, the geometrical branching model [6] (GBM) in the b space has been
suggested as a model for multiparticle production which combines the GS and Furry
branching [7] and leads to the KNO scaling for

√
s < 100 GeV.

In this paper we emphasize a statistical approach to pp collisions in the ISR
energy range similar to that developed in quantum optics [8]. We study under
which circumstances the multiplicity distributions of pions emitted from a classical
random source satisfy the KNO scaling.

It is assumed that the fields describing pions are gaussian random variables. The
incident leading protons which can neither be created nor destroyed are treated as
a classical random source for pions; their presence is parametrized by the rapidity
difference Y = ln(s/m2) and the relative impact parameter b.

The unitary S matrix following from such a classical random source is Ŝ(~b, s) [9].
It is an operator in the space of pions. The initial-state vector for the pion field

is Ŝ(~b, s)|0〉. The vacuum state |0〉 is a state with no pions but with two leading
protons present. In practice, we rarely have any information about the initial state

Ŝ(~b, s)|0〉. This means that physical quantities should be averaged over the initial-
state ensemble. In quantum statistics, the ensemble average is usually performed
using the density operator, which, in our case, is of the form

̺(~b, s) = {Ŝ(~b, s)|0〉〈0|Ŝ†(~b, s)}av (1)

and normalized to unity: Tr{̺} = 1.

2. High-energy approximation and the n-particle

scattering amplitude

Many results in hadron-hadron collisions can be understood in terms of a simple
picture that the outgoing particles have three origins: a) beam fragmentation,
b) target fragmentation and c) central production. At high energies most of the
particles are produced in the central region. To isolate the central production, we
adopt high-energy longitudinally-dominated kinematics, with two leading particles
retaining a large fraction of their incident momenta. The essential restrictions are
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as follows [9]:

(i) the leading-particle effect;

(ii) |yi| ≤
1

2
(1− ε)Y, Y = ln(s/m2), ε > 0,

(iii) small |~qiT |,

(iv) n(s) ≪ (s/m2)ε/2, n(s) = average multiplicity.

(2)

Here, yi and ~qiT denote the rapidity and the transverse momenta, respectively,
of the pions. At high energies restriction (ii) in (2) forces the outgoing nucleons
to have energies of the order

√
s/2 and equal but opposite longitudinal momenta.

As long as the average multiplicity satisfies restriction (iv) in (2), we can omit the
pion variables qiL and Ei from the argument of the energy momentum-conservation
δ-function which appears in the phase-space volume element for n pions and two
nucleons.

Using the following set of 3n + 2 independent variables s, ~∆, {~qiT , yi} ≡ qi,
i = 1, 2, . . . , n, the n-particle contribution to the s-channel unitarity becomes

An(s, ~∆) =
1

4s

∫
d2bei

~∆~b
n∏

i=1

dqi|Tn(~b, s; 1 . . . n)|2, (3)

where ~∆ ≡ 1
2 (~p

′
a−~pa)− 1

2 (~p
′
b−~pb) and dq = d2qTdy/2(2π)

3. The nucleon momenta
are labelled by pa and pb. The normalization is such that

An(s, 0) = sσn(s),

σinel(s) =
∞∑

n=1

σn(s).
(4)

3. Pion field as a random variable

As we have seen in the preceding section, the leading-particle effect is crucial
for an approximate treatment of the multiparticle s-channel unitarity integral, Eq.
(3), which enables us to consider the colliding nucleons as a classical source for
pions [10]. The basic equation for the pion field is

(2+ µ2)π(~b, s;x) = j(~b, s;x), (5)

where j is a classical random source. The reference to the nucleon states is in the

diagonal variables ~b and s.

Eq. (5) has the standard solution [11] in terms of in- and out-fields:

πin(~b, s;x) = πout(~b, s;x) +

∫
d4x′ ∆(x− x′, µ) j(~b, s;x′), (6)
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which are connected by means of the unitary Ŝ matrix Ŝ(~b, s) as follows:

πout = Ŝ†πinŜ = πin + πclassical. (7)

If Ŝ(~b, s) is written as

Ŝ(~b, s) = exp[iχ(~b, s)]; χ = χ†, (8)

then it is easy to see that the solution of Eq. (7) is obtained if χ(~b, s) has the
following form:

χ(~b, s) =

∫
d4x j(~b, s;x)πin(~b, s;x). (9)

It is convenient to rewrite the Ŝ matrix in the normal-order product form

Ŝ(~b, s) = e−
1

2
A(~b,s) : eiχ(

~b,s) : , (10)

where

A(~b, s) =

∫
dq |J(~b, s; q)|2 (11)

and

J(~b, s; q) =

∫
d4x eiqxj(~b, s;x). (12)

If j is treated as a fixed classical source, Eq. (8) becomes the AASB model [9].

Because of the random character of j, the transition probability

|〈1, 2, . . . n pions|Ŝ(~b, s)|0〉|2 (13)

is something that is defined only in a statistical sense. This means that we must

average (13) over the random source j(~b, s;x) to obtain the measurable transition
probability

|〈1, 2, . . . , n pions|Ŝ(~b, s)|0〉|2av = Tr{̺(~b, s)| pions 〉〈 pions|}

=
1

4s2
|Tn(~b, s; 1 . . . n)|2. (14)

The density operator ̺ is defined by Eq. (1).

In terms of the pion-number operator

N =

∫
dq a†(q) a(q), (15)
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the S matrix with no pions emitted can be written as

|〈0|Ŝ(~b, s)|0〉|2av = Tr{̺(~b, s) : e−N :} = 〈exp{−A(~b, s)}〉, (16)

where the angular brackets 〈. . .〉 denote an average in the ensemble of classical

random source j(~b, s;x). The connection with the inelastic cross section and the
exclusive cross section for the production of n pions is

σinel(~b, s) = 1− 〈exp[−A(~b, s)]〉

= 1− exp{−Ω(~b, s)}, (17)

and

σn(~b, s) =
〈 [A(~b, s)]n

n!
exp[−A(~b, s)]

〉
, n ≥ 1, (17′)

where Ω(~b, s) = − ln〈exp[−A(~b, s)]〉 is the usual eikonal function (or the opacity

function) of the geometrical model [12]. Note that 〈A(~b, s)〉 is related to the average

number of emitted pions at fixed ~b:

n(~b, s)σinel(~b, s) = 〈A(~b, s)〉. (18)

The pion-multiplicity distribution Pn(~b, s) = σn(~b, s)/σinel(~b, s) in the impact-

-parameter space ~b is most easily studied using the pion-generating function [13]

Q(~b, s;λ) = Tr{̺(~b, s) : e−λN :}

=
∞∑

n=0

(1− λ)nσn(~b, s)

= 〈exp[−λA(~b, s)]〉. (19)

Note that

σinel(~b, s) = 1−Q(~b, s; 1),

σn(~b, s) = (−1)n
1

n!
∂nλQ(~b, s, 1). (20)
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4. Chaotic-coherent mixture and the KNO scaling

In proton-proton collisions for energies
√
s < 100 GeV the transverse momenta

of pions are sharply limited 〈qT 〉 = const. As a result, correlations in the transverse
momenta are not expected to play too strong a role in determining the energy
dependence of the S matrix. In this spirit, the source function J may be written in
the separable form

J(~b, s; q) = g(~qT )f(~b, s; y). (21)

Since we are interested only in the rapidity interval |y| ≤ 1
2 (1−ε)Y , we can expand

f(~b, s; y) in a Fourier series over the rapidity interval Y :

f(~b, s; y) =

∞∑

l=0

gl(~b, s)ul(y), (22)

where

ul(y) = Y −1/2 exp[−2πi
l

Y
y] (23)

and
Y/2∫

−Y/2

ul(y)u
∗
l′(y) dy = δll′ .

Let us define

Y G(y) =
〈 ∫

dy′ f∗(y′) f(y′ + y)
〉
. (24)

For simplicity, we have used the abbreviations

f(~b, s; y) ≡ f(y) and G(~b, s; y) ≡ G(y).

The averaging procedure is now performed over the random Fourier coefficients

gl ≡ gl(~b, s).

For the independent Gaussian random coefficients gl we find

G(y) =
1

Y

∑

l

e−2πi l

Y
yGl, (25)

where

Gl = 〈g∗l gl〉 =
1

π

∫
d2gl |gl|2

1

Gl
exp[−|gl|2

Gl
]. (26)
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The generating function Q(λ) ≡ Q(~b, s;λ) is

Q(λ) =
∏

l

1

1 + λg2Gl
= exp[−

∑

l

ln(1 + λg2Gl)], (27)

where

g2 =
1

4π

∫
d2qT
(2π)2

|g(~qT )|2. (28)

The convergence criterion reads

G(0) =
1

Y

∑

l

Gl <∞. (29)

The quantities Gl are obtained from G(y) as

Gl =

Y/2∫

−Y/2

G(y) exp[2πi
l

Y
y]dy. (30)

Since the mass of the emitted pion is fixed, f(y) should fall when y becomes very
large. This means that G(y) will also fall off when y becomes larger than some
“correlation length” ξ. More precisely, we define

γ(y) =
G(y)

G(0)
; |γ(y)| ≤ 1, (31)

then the quantity

ξ = 2

∞∫

0

|γ(y)|2 dy (32)

is a possible measure of the “correlation length” if, for example,

G(y) ∼ e−|y|/ξ.

In the limit when Y is small compared with ξ, we may replace G(y) by
G(0) exp(−2πi l0Y y) where l0/Y plays the role of the centre of rapidity frequency.
Hence (30) shows that Gl0 = Y G(0) with all other Gl vanishing. This leads to the
generating function Q of the form

QBE(λ) =
1

1 + λg2Y G(0)
, (33)

which is recognized as the generating function for a geometric or Bose-Einstein
distribution.
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In the next approximation for Y which is not too large (Y ∼ ξ), we can account
for a slow variation of G(y) if we set

G(y) = G0(y) exp(−2πi
l0
Y
y) = G(0)γ0(y) exp(−2πi

l0
Y
y), (34)

where G0(y) ≃ G(0) in the interval |y| ≤ 1
2Y .

The largest term is obviously

Gl0 =

Y/2∫

−Y/2

G0(y) dy = G(0)

Y/2∫

−Y/2

γ0(y) dy, (35)

while the remaining terms

Gl0+l =

Y/2∫

−Y/2

G0(y) exp[2πi
l

Y
y] dy (36)

are assumed to be small for all l /=0.

For the remaining terms in (36) we expand the logarithm in (27) to the first
order so as to obtain

Q(λ) =
1

1 + λg2Gl0

exp[−λg2
∑

′Gl0+l], (37)

where the prime signifies that the term l = 0 has been omitted from the sum.
Eq. (37) is recognized as the product of two generating functions [14] – one for a
Bose-Einstein distribution and the other for a Poisson distribution. It follows that
the resultant distribution σn(~b, s) is given as a convolution:

σn(~b, s) =
∑

m=0

σBE(n−m;~b, s)σPoisson(m;~b, s). (38)

It is also easy to check that

∑

n

n

∫
σn(~b, s) d

2b = σinel(s)n(s) = σBE(s)nBE(s) + σP(s)nP(s). (39)

Note that σBE + σP /=σinel.

In the limiting form at energies, Y ≫ ξ; one sees that all Gl for wich l ≪ Y/ξ
are equal and that Gl become negligible for l ≫ Y/ξ. We regard Gl as a slowly
varying function of l. In this case it is possible to use a continuum approximation
and replace

∑
l by Y

∫
dν:

Q(λ) = exp{−Y
∞∫

0

dν ln(1 + λg2G̃(ν))}, (40)
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where we have sensibly chosen

G̃(ν) =

+∞∫

−∞

G(y) exp[2πiνy] dy. (41)

If we set λ = 1− eix, then

σn(~b, s) =
1

2π

π∫

−π

dx exp{−inx− Y

∞∫

0

dν ln[1 + (1− eix)g2G̃(ν)]}. (42)

This expression is valid for large Y and a relatively broad spectrum G̃(ν), both of
which make

n(s) =
∑

n

n

∫
σn(~b, s)d

2b≫ 1. (43)

It is then reasonable to assume that Pn(s) = [σinel(s)]
−1

∫
σn(~b, s) d

2b is a slowly
varying function of n and that we can approximate Pn(s) by a smooth density
function ψ(z, s) interpolated on the basis of the points

ψ(zn, s) ≈ n(s)Pn(s), (44)

where

zn = n/n(s). (45)

The normalization is such that

∞∫

0

ψ(z, s)dz =
∑

n

ψ(zn, s)
1

n(s)
= 1. (46)

The smooth approximation is obtained by replacing the integration limits for x→
→ xn by ±∞, and retaining only the first term in an expansion of x in the logarithm
(42), that is

n(s)σn(~b, s) → (2π)−1

+∞∫

−∞

dx exp{−izx− Y

∞∫

0

dν ln[1− i
x

n(s)
g2G̃(ν)]}. (47)

This expression may be viewed as the limit of (44) as n→ ∞, n→ ∞, G̃(ν) → ∞
and zn → z and G̃(ν)/n ∼ finite.

For all practical purposes, when n, n≫ 1, we may use the distribution

Pn(s) = n−1ψ
(n
n
, s
)
, (48)
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where ψ(z, s) is defined by (47). The probability distribution Pn will exhibit the

KNO scaling property if G̃(ν) ≡ G̃(~b, s; ν) depends only on the scaled impact
parameter b(s) = b/R(s).

5. Negative–binomal distributions

To illustrate the effectiveness of the procedure proposed in the preceding section,

let us consider a simple model of the square spectrum of G̃(ν), which nevertheless
gives all the main features of pp collisions in the ISR energy region.

We assume that G̃(ν) is of the form

G̃(ν) =
Y

k
G(0) for 0 < ν1 ≤ ν ≤ ν1 +

k

Y
,

G̃(ν) = 0 elsewhere, (49)

where k is not necessarily an integer. The corresponding pion-field correlation func-
tion (25) is

G(y) =

∞∫

0

dν G̃(ν)e−2πiνy

=
Y

k
G(0)

sin(π k
Y y)

πy
exp{−2πi(ν1 +

k

2Y
)y}. (50)

From (32) we find that the correlation length is

ξ =
Y

k
. (51)

The pion generating function obtained using (40) is now

Q(λ) =

(
1 + λ

〈A〉
k

)−k

, (52)

where 〈A〉 ≡ 〈A(~b, s)〉 = Y g2G(0).

We recognize that (52) represents the generating function of the negative bino-
mial (NB) distribution:

σNB
n (~b, s) =

Γ(n+ k)

n!Γ(k)

( 〈A〉
k

)n (
1 +

〈A〉
k

)−n−k

. (53)

The average number of pions is

n(s) =
1

σinel

∫
d2b〈A〉, (54)
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where

σinel =

∫
d2b[1− (1 +

〈A〉
k

)−k]. (55)

If n and 〈A〉 are both large, we find that 〈A〉σn(~b, s) depends only on the single
variable n/〈A〉:

〈A〉σn(~b, s) =
kk

Γ(k)

(
n

〈A〉

)k−1

e−
n

〈A〉
k. (56)

Of course, there is no quarantee that the simple scaling function (56) will be pre-
served after integration over b.

The geometrical properties of pp collisions in the ISR energy range 20 - 65 GeV
may be related to the geometrical scaling of the pion-field correlation function

G(0) ≡ G(~b, s; 0) i.e. that it depends only on the dimensionless scaling variable
b(s) = b/R(s). For simplicity, we assume that G(0) has a form of a step function
θ(R− b), so that

〈A〉 = Aθ(R− b), A = Y g2. (57)

Other functional forms are also possible (e.g. exp(−b2/R2) etc.). However, they
do not essentially change our conclusions concerning the KNO scaling of Pn(s) =
= σn(s)/σinel(s).

In the model given by (57)

n(s) = A
(
1 +

A

k

)k

/
[(

1 +
A

k

)k

− 1
]

∼ A if A is very large, (58)

σinel(s) = πR2 (1 +
A
k )

k − 1

(1 + A
k )

k
∼ πR2 if A is large (59)

and

Pn(s) =
Γ(n+ k)

n!Γ(k)

(A
k

)n(
1 +

A

k

)−n

/
[(

1 +
A

k

)k

− 1
]

∼ Γ(n+ k)

n!Γ(k)

(A
k

)n(
1 +

A

k

)−n−k

if A is very large. (60)

The KNO-scaling form is

APn(s) =
kk

Γ(k)

( n
A

)k−1

exp
[
− n

A
k
]
, (61)

where A is related to n(s) via Eq. (58).
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The interpretation of NB distributions in terms of a stochastic model has been
proposed earlier [15]. It assumes stimulated or partially stimulated emission of iden-
tical bosons. In stimulated emission, k is an integer, while in partially stimulated
emission, k is a continuous parameter. It has been found experimentally [16] that
pp collisions at the ISR energies are well fitted by the NB distribution provided
that k takes values between 8 and 11.

6. Conclusion

In this paper we have investigated the origin of the KNO scaling in pp collisions
at ISR energies. Our approach to pion production is based on the leading-particle
approximation in which the colliding protons are considered as a classical random
(Gaussian) source of pions. By analyzing the pion-pair correlation function, we
have shown that, depending on the ratio of the correlation function length ξ and
the rapidity interval Y = ln(s/m2), we obtain

a) chaotic (or Bose-Einstein) distribution of pions if ξ ≫ Y ,

b) mixture of chaotic and Poisson (coherent) distribution of pions if ξ ∼ Y ,

c) negative binomial distribution and the KNO scaling if Y ≫ ξ and the pion-
pair correlation function satisfies the geometrical scaling.
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PIONSKA POLJA KAO GAUSSOVE SLUČAJNE VARIJABLE
I KOBA–NIELSEN–OLESENOVO SKALIRANJE
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Originalni znanstveni rad

Diskutirane su pionske raspodjele slučajnog Gaussovog nukleonskog izvora. Do-
bivena je veza s kaos-koherentnom mješavinom, Koba-Nielsen-Olesen skaliranjem
te s negativnom binomnom raspodjelom.
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