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Classical theory of collisions is formulated which also includes uncertainty principle.
The theory is used for the calculation of transition probabilities in the collinear He-
H2 collision, and the results are compared with quantum calculations. Very good
agreement is found.

1. Introduction

Investigation of the relationship between quantum and classical theory is of
great interest and importance. Quantum theory is more fundamental than classical
theory, however latter often gives physical insight into the processes governing the
dynamics of a system. This is clearly manifested in the application of classical the-
ory in the analysis of atom-molecule collissions [1,2], where it helps understanding
of the scattering cross sections [3-5]. Furthermore, classical theory is an initial value
problem, while the problems in quantum mechanics are both boundary and initial
value problems. Therefore, classical theory is usually easier to implement.
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By putting the uncertainty principle into classical mechanics one can improve
its results for the problems where there was a substantial discrepancy between
quantum and classical theory. Various tests have been made, ranging from nonrel-
ativistic [6-8] to relativistic [9,10] systems, and in all the cases classical theory gave
virtually the same answers as quantum theory. The dynamics of unbound particles
was described in an almost total accord with quantum theory [6,9,10]. However,
the problems where encountered in describing the excited states of bound parti-
cles [7,8]. Here, we present a sligthly more general approach that can overcome
those difficulties.

2. Classical theory of bound states

One of the major problems is finding the stationary states of bound particle, and
if properly solved – in the frames of classical theory – a number of classical studies
could be carried out, including the atom-molecule collision problem of this paper.
The new approach to classical theory is based on two assumptions: the coordinate
and the momentum of a particle are uncertanity, i.e., they are represented by the
probability distribution and those distributions are mutually related. The precise
form of the relationship between the probability distribution in the coordinate P (x)
and the probability distribution in its momentum Q(p) is difficult to guess without
making reference to the basic principles of quantum theory, but in principle one
could think of various ways of doing it. We will take this relationship from quantum
theory, in which case the distributions are related by (for simplicity we work in one
dimension):

P (x) = |ψ(x)|2; Q(p) = |φ(p)|2 (1)

ψ(x) =
1√
2πh̄

∫

dpφ(p)eipx/h̄. (2)

Here, ψ(x) and φ(p) are just auxiliary functions; the physics is in P (x) and Q(p).

Discussion of the time dependence of the probability distributions is made more
general by working in the phase space, where one defines the density ρ(x, p, t) with
the following properties: The total amount of probability in a volume element
should be conserved, hence

ρ(x, p, t)dxdp = ρ0(x0, p0, t0)dx0dp0 (3)

where p and x are related to x0 and p0 by the classical equations of motion. It
follows then that the density ρ obeys the Liouville’s equation

∂ρ

∂t
+

p

m

∂ρ

∂x
+ F

∂ρ

∂p
= 0 (4)

where F is force which acts on the particle and m is mass of the particle. The
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probability densities P and Q are obtained from ρ by

P (x, t) =

∫

dpρ(x, p, t) Q(x, t) =

∫

dxρ(x, p, t). (5)

If analysis in the phase space gives more general overview of the properties
of P and Q, and they are related by (1) and (2), the question obvious to ask is:
can ρ(x, p, t) be related to the function ψ(x, t)? The answer is not simple, but
various approximate forms can be readily found. Among them is the Wigner’s
function [11,12]

ρ(x, p, t) =
1

2πh̄

∫

dyψ(x+ y/2)ψ(x− y/2)e−ipy/h̄ (6)

which has been used for various purposes [13-15], but basically to define the phase
space quantum theory. We discuss entirely classical theory, the only reference to
quantum theory being the relationships (1) and (2). In this respect the discussion
is different from Wigner’s, because his starting point is quantum theory and the
classical phase density is obtained as the limit h̄→ 0 of the function ρ [11,15,16,17].
This is not the correct assumption because classical theory cannot be regarded as
the limiting case of the quantum theory, when the Planck constant goes to zero.
Our analysis will confirm this, showing that the classical results are virtually the
same as quantum, even when the ground state of particle is involved (hence the
state for which this limit is not valid).

The function (6) is not positive definite but there is nothing to prevent us from
using it as the phase space density in a more general sense, i.e. by defining negative
phase space densities. Still, if ρ is to be regarded as the phase space density it has to
satisfy the Liouville’s equation (4), and this requirement will provide the condition
that ψ should satisfy in order this to be true.

The force F in (4) can be replaced by −δV/δx, and providing that the second
and higher derivatives of V (x) go to zero it can be shown that ρ satisfies the
Liouville’s equation if ψ satisfies the equation

ih̄
∂ψ

∂t
= − h̄2

2m

∂2ψ

∂x2
+ V (x, t)ψ. (7)

We have solved in this way the problem of time evolution of P (x, t) which was
defined in (1) and (2), and which satisfies Eq. (7). This equation is exact for har-
monic potential and approximate for any other potential. The stationary states
of bound particle are characterized by the time independence of the distributions
P (x, t) and Q(p, t). This criterion has its physical significance since the time de-
pendent probability distribution of a charged particle radiates. Therefore, for the
stationary states ψ(x, t) satisfies

dP (x, t)

dt
=

dψ

dt
ψ∗ + ψ

dψ∗

dt
= 0. (8)
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skenderović and bosanac: uncertainty principle in classical mechanics: . . .

The equation (8) suggests that we should seek the solution for the stationary
states in the form

ψ(x, t) = ψ0(x)e
−iEt/h̄. (9)

Then Eq. (7) reduces to

Eψ0 =

[

− h̄2

2m

∂2

∂x2
+

1

2
mω0x

2

]

ψ0 (10)

where we have assumed that particle is bound by a harmonic potential, ω0 being
its characteristic angular frequency. As it is well known, the equation has solutions
only for discrete values of E if ψ0 is to be physically acceptable. E is the average
total energy because using Eqs. (1) and (2) from the definition of average total
energy of the particle

E =

∫

dp
p2

2m
Q(p) +

∫

dxV (x)P (x) (11)

one can reproduce Eq. (10) for the ψ0. The discrete values for the energy are

E = ω0h̄(n+ 1/2) (12)

where n = 0, 1, 2, . . . The appropriate functions ψ0(x) are

ψ0(x) = NHn

(

x
√
λ
)

exp
(

−λx2
)

(13)

where N is a constant that ensures that P (x, t) is normalized to unity, Hn is Her-
mite polynomial, and λ = mω0/h̄. Therefore, the classical theory predicts infinite
number of discrete probability distributions that are stationary. The first few phase
space densities ρ are

ρ0 =
1

πh̄
e−u/h̄

ρ1 =
1

πh̄
(2u/h̄− 1)e−u/h̄

ρ2 =
1

πh̄
(2u2/h̄2 − 4u/h̄+ 1)e−u/h̄

(14)

where u = p2/mω0 +mω0x
2.

These densities will be used in the study of atom – molecule collisions.

3. Atom – molecule collinear collision

In this section we develop classical theory for calculating transition probabilities
in a collinear collisions problem, in which atom approaches diatomic molecule along
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the molecular axis. The internal coordinate of the molecule is designated by x, while
the relative separation of the incoming atom and the centre of mass of the molecule
is y. The molecule is approximated by harmonic oscillator. Initially, say at t = 0,
the atom and the molecule are well separated, the molecule being in the bound
state n0 described by the phase space density ρn0

(x, p) and the atom is localized
around some initial position, its probability density given by Pa(y). The overall
probability density is P0(x, y) and it is interpreted as the probability of finding
atom at the distance y and molecule being streched by x.

Classical equations of motion for the system we consider, in the centre of mass
of three atoms, for the case of homonuclear diatomic molecule, are

2mM

2mM +M
ÿ =

∂V (y − x/2)

∂y
(15)

m

2
ẍ = −κx+

1

2

∂V (y − x/2)

∂y
(16)

where M is mass of the incoming atom and m is mass of one of the atoms in the
homonuclear diatomic molecule. The potential of the diatomic molecule is assumed
to be the one of harmonic oscillator, of the form κx2/2, and the potential between
the incoming atom and the molecule is assumed to be a function of the distance
y − x/2. In the calculations we will assume that the potential V is repulsive, of

the form V0 exp
[

−α
√
λ(2y − x)

]

, where α and V0 are constants and λ = mω/(2h̄).

This form is assumed in order to compare our classical results with the quantum
calculations of Secrest and Johnson [19].

The aim of classical theory is now to calculate the probability distribution
P (x, y, t) at any later time, from the knowledge of the initial distributions just
described. There are various ways of doing this, but the simplest is the following:
a set of pairs of random numbers [xi, pi] and [yi, qi] is generated, with the property
that [xi, pi] are distributed according to phase space density ρn0

(x, p), whilst yi is
distributed according to Pa(y) and qi is distributed according to Qa(q). Pa(y) is
determined from the assumption that the incoming atom is uniformly delocalized
in a large interval for y < y0, where y0 is sufficiently far from the molecule so that
the potential V is negligible. If the interval within which the incoming atom is
delocalized is sufficiently large we can assume that the relative momentum q has a
fixed value given from the energy conservation. These numbers determine the initial
conditions for a classical trajectory which is calculated from the classical equations
of motion, (15) and (16). After time t the value of the coordinates is x and y, and
if N sets of initial conditions are generated, out of which nxy trajectories end in a
small interval around the coordinates x and y, then the classical probability density
at the time t is

P (x, y, t, ) ≈ nxy
Nδxδy

(17)

where δx and δy are intervals within which trajectories are sampled. At this point
an important assumption is made. The phase space density ρ(x, p) is not positive
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definite, and therefore it cannot be taken as the distribution from which the ran-
dom numbers [xi, pi] are generated. However, our assumption is that these random
numbers are generated from |ρ(x, p)|, and if the pair [xi, pi] is such that ρ(xi, pi) > 0
then we associate +1 with the trajectory, and if ρ(xi, pi) < 0 then we associate −1.
Therefore the number nxy in (17) represents the difference between all the trajecto-
ries with +1 and all those with −1 associated with them, and end in interval around
x, y. This assumption is only a more general use of the probability density. The
important thing is that the final result must have physical significance, meaning
that P (x, y, t) must always be positive.

In our study we are interested in obtaining results in the limit of the stationary
scattering, which is achieved by calculating the probability distribution P (x, y, t)
for t≫ t0, where t0 is the period of oscillations of the molecule. The knowledge of
the final coordinate of the scattered atom is not necessary, so that we calculate the
average probability

P (x, t) =

∫

dyP (x, y, t). (18)

The practical procedure for calculating P (x, t) is simple: one counts final tra-
jectories in a certain interval around x irrespective of what the value of y is. The
question is now how to obtain the probability of finding molecule in the state n if it
was initially in the state n0 from the quantity given by relationship (18). The same
quantity, P (x, t), averaged over time, can be calculated from the quantum theory

and the result is given by [7,18]

P (x, t) =
∑

n

w2
n(x)Pn,n0

(19)

where Pn,n0
is the transition probability of finding molecule in the state n if it

was initially in the state n0, and the wn(x) is the eigenfunction of the harmonic
oscillator. Therefore, getting Pn,n0

is possible by making the least square fit of the
classical P (x, t), given by the time average of Eq. (18).

4. Results and discussion

The example which we analyze is collision of He atom with H2 molecule, and
compare our classical transition probabilities with those calculated from quantum
theory by Secrest and Johnson [19]. This particular example showns that classical
theory is unable to predict correctly the transition probabilities in vibration energy
transfer. The same is true for the semiclassical theory, based on the path integral
method [21], and it is only the uniform semiclassical theory [20] which gives the
correct transition probabilities.

First, we analyzed the transition probabilities from the initially ground state
(n = 0) of the molecule. Before collision the incoming atom (He) was located far
away from the molecule (H2), and it was delocalized within the distance 2πv0/ω
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skenderović and bosanac: uncertainty principle in classical mechanics: . . .

where v0 is initial relative velocity between the atom and the molecule. The av-
eraged probability distribution (18) was calculated for the time t ≫ t0. It was
obtained by sampling the coordinates x regardless of the position y of the scattered
atom. The calculations were made for several time moments t, that showed that the
averaged probability distribution is independent of the time when the sampling is
done. Two examples of these probability distributions are shown in Fig. 1, one for
low and the other for high collision energy (collision energy is measured in the units
of h̄ω/2, i.e. the zero point energy of harmonic oscillator). The circles represent our
classical calculation based on 100 000 sets of initial conditions, whilst the solid line
is the probability distribution calculated from the transition probabilities of Secrest
and Johnson [19] via Eq. (19). It is interesting to note that no large numerical in-
stabilities are encountered in the least square fit procedure, despite the fact the
basis functions are all positive definite. The transition probabilities were calculated
for 4 different collision energies, and the numerical values of the classical and the
quantum calculations are given in Table 1. The agreement between the results
from “classical” classical calculation [20] and quantum results is very bad, espe-
cially at lower energies. The semiclassical results do not show great improvement
over the “classical” classical results and just the uniform semiclassical calculations
give comparable accuracy with the quantum results [20]. The agreement between

Fig. 1. Quantum time-averaged probability distribution (solid line) and classical
time-averaged probability distribution (circles) when the molecule is initially in its
ground state.
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Table 1. Transition probabilities for transitions from the initial ground state of
H2 molecule for various collision energies. Comparison is made with the quantum
results of Secrest and Johnson. Energy is measured in the units of h̄ω/2.

E = 6 E = 10 E = 16 E = 20
Nf Pclass Pquant Pclass Pquant Pclass Pquant Pclass Pquant

0 0.984 0.978 0.740 0.733 0.192 0.204 0.054 0.060
1 0.016 0.022 0.247 0.252 0.433 0.434 0.202 0.218
2 0.015 0.015 0.305 0.291 0.352 0.366
3 0.071 0.071 0.294 0.267
4 0.107 0.092

our classical and quantum calculations is very good, becoming progressively worse
as the collision energy increases.

The results for the transition probabilities when the molecule is initially in
excited state n = 1 and n = 2 are given in Table 2 and Table 3, respectively.
The averaged probability distributions for two collision energies when molecule is
initially in n = 2 state are shown in Fig. 2. The agreement between our results and

Fig. 2. Quantum time-averaged probability distribution (solid line) and classical
time-averaged probability distribution (circles) when the molecule is initially in
n = 2 state.

170 FIZIKA B 2 (1993) 3, 163–173
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Table 2. Transition probabilities for transitions from the first excited state of H2

molecule for various collision energies. Comparison is made with the quantum re-
sults of Secrest and Johnson. Energy is measured in the units of h̄ω/2.

E = 6 E = 10 E = 16 E = 20
Nf Pclass Pquant Pclass Pquant Pclass Pquant Pclass Pquant

0 0.012 0.022 0.260 0.408 0.408 0.394 0.206 0.218
1 0.999 0.977 0.546 0.563 0.184 0.224 0.287 0.286
2 −0.010 0.001 0.204 0.182 0.392 0.345 0.047 0.009
3 −0.010 0.003 0.016 0.037 0.092 0.170
4 0.262 0.240
5 0.112 0.077

Table 3. Transition probabilities for transitions from the second excited state of
H2 molecule for various collision energies. Comparison is made with the quantum
results of Secrest and Johnson. Energy is measured in the units of h̄ω/2.

E = 6 E = 10 E = 16 E = 20
Nf Pclass Pquant Pclass Pquant Pclass Pquant Pclass Pquant

0 0.000 0.001 0.017 0.015 0.065 0.068 0.366 0.366
1 0.031 0.042 0.182 0.182 0.378 0.345 0.027 0.009
2 0.980 0.956 0.751 0.744 0.289 0.348 0.153 0.207
3 −0.010 0.001 0.055 0.059 0.286 0.233 0.105 0.018
4 −0.018 0.006 0.058 0.169
5 0.239 0.194
6 0.060 0.037

quantum results for transition probabilities when molecule is initially in an excited
state is good, getting worse at higher energy.

Based on the previous results one concludes that classical theory gives virtually
the same results as quantum theory, the deviations being relatively large for higher
collision energies. The question which is obvious to ask is whether this is the defi-
ciency of the theory or of the numerical procedure. That the numerical problems
are significant can be noted from the tables. Some of the transition probabilities
(classical) are negative, and therefore can be regarded as the sign of inaccuracy of
our procedure. At the hart of the problem are the fluctuations of random numbers
which makes least square fit, of the sort (19), relatively inaccurate. The inaccura-
cies become significant for higher collision energies, when the pattern P (x) becomes
more difficult to fit to a series of positive definite functions.
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PRINCIP NEODREDENOSTI U KLASIČNOJ MEHANICI:
PRIMJENA NA KOLINEARNE SUDARE
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Originalni znanstveni rad

Klasična teorija sudara formulirana je uz uvažavanje principa neodredenosti. Izra-
čunali smo prijelazne vjerojatnosti za kolinearni sudar He-H2 i usporedili rezultate
s kvantnim proračunima. Pronašli smo vrlo dobro slaganje.
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