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In this work we have analyzed dynamics of a particle in the one dimensional model of
the plane electromagnetic wave. Our particular interest was to show that classical
theory can describe this dynamics very well, and gives the correct momentum
distribution of particle which depends on the frequency of the field as well as on its
amplitude.

1. Introduction

Multiphoton excitation of particles is the field of great interest for fundamental
research and for application [1,2]. Frequently, classical dynamics is used for analyz-
ing such processes [3]. Among the classical methods, the one which is commonly
used is the Monte Carlo method [4,5], in which randomization of initial position
of the particle is assumed, while the momentum is taken from the law of energy
conservation. The success of Monte Carlo simulation, in explaining energy transfer,
is due to the fact that the momentum distribution of the particle is narrow. If
the latter condition is not satisfied, the method fails to explain the correct energy
transfer.
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Recently, an improvement was made in classical dynamics, in order to take into
account the momentum distribution [6,7]. The idea is to relate the position and the
momentum distribution in accordance with the uncertainty relation

∆x∆p ≥ h̄. (1)

The distributions which satisfy this condition are related by

P (x) = |ψ(x)|2 Q(p) = |φ(p)|2 (2)

ψ(x) =

√

1

2hπ

∫

dpφ(p)eipxh̄.

Based on this amendment, various examples were investigated including the
relativistic dynamics of particles interacting with plane electromagnetic (EM)
wave [6,7]. Excellent agreement with quantum theory was found for the position
distribution, but the detailed analysis of momentum distribution was not made.
In this article we will concentrate on the Q(p, t) distribution in order to explain
energy transfer between EM field and particle.

2. Classical theory

Classical time evolution of P (r, t) and Q(p, t), given the initial conditions (2),
can be calculated in various ways. The simplest one is to calculate these distribu-
tions by taking random conditions for trajectories from the distributions P0(x) and
Q0(p), and sample them conveniently after time t. Although the procedure gives
satisfying results for dynamics of unbound particles, in general, the choice of the
coordinate x depends on the choice of the momentum p. Therefore, one defines the
distribution ρ(x, p, t) in the phase space, with the property

P (x, t) =

∫

dp ρ(x, p, t) Q(p, t) =

∫

dx ρ(x, p, t) (3)

and from this function one chooses the initial conditions.

The function ρ(x, p, t) satisfies two important relationships. The first is

ρ [x(t), p(t), t] δxδp = ρ [x0, p0, t0] δx0δp0. (4)

This requirement ensures that all the trajectories from the volume element δx0δp0
are confined to the volume element δxδp at any later time t.

The second relation is the Liouville’s equation

∂ρ

∂t
+

p

m

∂ρ

∂x
+ F

∂ρ

∂p
= 0 (5)
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from which one obtains the continuity equation for the probability and probability
current. F is force acting on the particle with mass m.

It is essential now, if we try to analyze Q(p, t), to find the connection between
ρ and ψ. The Wigner’s function is one possibility [8], but it is not the only one.
This function is given by

ρ =
1

2πh̄

∞
∫

−∞

dy e−ipyψ∗

(

x− y

2

)

ψ
(

x+
y

2

)

(6)

which satisfies the conditions (3), and approximately the Liouville’s equation [9].
From this function one is able to calculate the phase δ(x, t) of the wave function,

defined by ψ =
√
Peiδ, which is given by

δ(x, t) =
m

h̄

x
∫

dx′
j(x′, t)

P (x′, t)
(7)

where j(x, t) is the probability current. This connection is also used for obtaining
ψ(x, t) at any later time, what is essential for calculating the momentum distribu-
tion Q(p, t) from

Q(x, t) =
1

2πh̄

[
∫

dxe−ixp/h̄
√

P (x, t)eiδ(x,t)
]2

(8)

which is in accordance with the assumption (2).

In this article we present a 1D study of dynamics of a particle in the intense
EM field. We approximate the probability distribution by a rectangular shape and
the EM fields by an oscillating electric component. The interaction potential is of
the form

V (x, t) =
eE0

k
cos(kx− ωt) (9)

where the wave number k and the frequency of the field ω are related by kc = ω,
where c is the speed of light. For this model the classical equation of motion is

mẍ = eE0 sin(kx− ωt). (10)

It is convenient to scale the equation by defining x as a product κx and time as κct,
where κ = mc/h̄ is the Compton’s wave number. The classical equation of motion
is now

ẍ = ε sin [k(x− t)] (11)

where ε = eE0/(kmc
2), and where we also use k to represent k/κ. Solving this

equation for a large number of initial conditions we obtain P (x, t), the current
j(x, t) and from equation (8) the distribution Q(p, t).
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3. Quantum theory

In this section we will make a brief review of the quantum solution to the
problem which was defined in the previous section. The aim is to compare the
analysis of the energy transfer between a particle and the field based on the classical
and quantum approaches. The basic quantum equation is

i
∂ψ

∂t
= −1

2

∂2ψ

∂x2
+
ε

k
cos [k(x− t)]ψ (12)

where the same scaled coordinates are used as in Eq. (11). For the initial ψ at
t = 0, we assume a function confined to the region of space between x = 0 and
x = a. In this paper we solve Eq. (12) numerically by the following procedure. It is
assumed that the system is enclosed in a potential well, with infinitely high walls at
the positions x = −δ and x = a+ δ, but otherwise being zero. We define functions

φn(x) =

√

2

a+ 2δ
sin

[

x+ δ

a+ 2δ
πn

]

(13)

where a is the interval within which P0(x) is confined and the solution of Eq. (12)
is written as

ψ(x, t) =
∑

n

cn(t)φn(x). (14)

A set of the first order ordinary differential equations in the time variable is obtained
for the coefficients cn(t) if Eq. (14) is replaced in Eq. (12), and they are then solved
numerically.

4. Examples

Before any analysis of typical examples, it is worth mentioning numerical values
of the parameters involved in our study. We will be dealing with electron as the
particle in which case, if the intensity of the incident radiation is 1 W/cm2, and
its wavelength is 10−7 m, then the coupling coefficient is ε = 2.07 · 10−15, and the
ratio k/κ, or k in the notation of the previous sections, is 2.43 · 10−5. For these
numbers it is difficult to do any numerical study, and so the parameters which will
be used have larger values. In our study, in order to obtain the nicest features for
energy transfer, we will consider broad probability distributions in the coordinate
x. A broad distribution means that the width of the distribution is an order of
magnitude larger than the wave length of the EM wave.

First, we have investigated the weak coupling examples, and by that we mean
the cases when ε/k2 ≪ 1. In this limit, however, the classical calculations are
numerically very demanding and so this parameter should not be too small. The
example which we could treat with a reasonable effort is for ε/k2 = 0.054, and
the results are shown in Fig. 1. The wave number of the EM field is k = 0.135
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Fig. 1. Classical (solid line) and quantum (broken line) distribution P (x, t) and
Q(x, t) for the weak coupling between the EM plane wave and the particle, given at
two time intervals. Only the central segment of a much wider distribution P (x, t)
is shown for better comparison.

and the time is measured in the units of the period of its oscillations (τ = 2π/ω).
The blowup part near the central segment of P (x, t) is shown (a = 986) for better
comparison. Both the quantum (broken line) and classical (solid line) results show
very good agreement for P (x, t), sligth deviations being more obvious for longer
time.

The distribution of moments is also shown. The central peak at p = 0 is not
shown because it has much greater amplitude. Also, the distribution is symmetric
with respect to the change in sign of p, and so this is also not shown. The agreement
between the classical (solid line) and the quantum (broken line) calculations is very
good, and the distribution peak is exactly at p = k. In the language of the QED
this peak corresponds to the “one photon energy transfer”.

In the next example we consider the intermediate coupling when ε/k2 = 0.54
and k = 0.135. The width of the distribution is the same as in the previous exam-
ple. Figure 2 shows again two typical results for P (x, t) and Q(p, t) for the short
and longer time. For the short time the agreement between the quantum (broken
line) and the classical (solid line) calculations is very good, both for P (x, t) and the
momentum distribution Q(p, t). Again, in the latter case we do not show the cen-
tral peak and the distribution for the negative p. We notice the single peak at p = k
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Fig. 2. The same as in Fig. 1, except for the intermediate coupling.

which corresponds to the “one photon energy transfer”. However, for longer time
the deviation between the classical and the quantum P (x, t) is obvious. The classical
P (x, t) appears to be getting singularities whilst the quantum P (x, t) is a smooth
function, although the general oscillation pattern is reproduced very well. The
momentum distributions are similar, showing also peaks for “two photon” and
“three photon” energy transfer, but the intensities are not the same.

The singularities in P (x, t) are more pronounced for longer time, and their
explanation is found using Eqs. (3) and (4). The distribution P (x, t) is

P (x, t) =

∫

dρ ρ(x, p, t) =

∫

dx0
ρ0 [x0(p0, x, t), p0]

dx

dx0

(15)

and the denominator may be zero for a particular value of the initial x0. This can
be verified by solving sligthly modified set of equations (11). The set is divided
by δx0, in which case its solution represents the derivatives δx/δx0 and δp/δx0
if the initial conditions are δx/δx0 = 1 and δp/δx0 = 0. For the other initial
conditions it was assumed that the initial velocity of the particle is zero while its
initial position is taken from the interval defined by P0(x). The results are shown
in Fig. 3, for the same parameters as in Fig. 2, except that t = 5τ . The broken
line represents the derivative dx/dxi, and whenever its value goes through zero,
a singularity in P (x, t) appears. Therefore, the deviations between the classical
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Fig. 3. Explaining the singularities of the classical P (x, t) in Fig. 2. Whenever the
denominator in Eq. (15) is zero a singularity appears in P (x, t).

and the quantum calculations are not fundamental but they are of the sort which
are found in the description of the classical and quantum rainbow. For greater
ε/k2 ratio the quantum calculations become more demanding because of the poor
convergence of the series (15). On the other hand, the classical calculations are very
easy to do without numerical instabilities.

5. Discussion

In this work we have analyzed dynamics of a particle in the one dimensional
model of the plane EM wave. Our particular interest was to show that classical
theory can describe this dynamics very well, and gives the correct momentum
distribution of the particle which depends on the frequency of the field as well as
on its amplitude. It was shown that in the weak coupling limit classical theory gives
the same results as the quantum analysis, whilst in the strong coupling limit the
probability distributions get singularities which are the source of discrepancies. The
analysis is not complete without taking into account the radiation field produced
by the particle. This work is, therefore, a preliminary study which tests to what
degree classical theory is able to explain some of the fundamental processes in the
EM field.
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Originalni znanstveni rad

U ovom radu smo analizirali interakciju čestice i ravnog elektromagnetskog vala.
Koristili smo jednodimenzionalnu aproksimaciju. Pokazali smo da u takvoj aproksi-
maciji, klasična teorija u potpunosti opisuje prijenos energije, te daje respodjelu
impulsa koja ovisi prvenstveno o frekvenciji polja.
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