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Coupled channel equations for barrier penetration problems have been separated
using the theory of coupled differential equations. The corresponding proper phase
shifts have been obtained numerically using JWB approximation. The effect of mag-
nitude of coupling strength was studied. The Gaussian form for the coupling and
diagonal potentials in three dimensional space was used to calculate the inelastic
cross section for the system 58Ni–58Ni in a two-state approximation.

1. Introduction

The reactions between complex nuclei at low energies are often classified into
three categories: quasielastic (for very soft collisions), deeply-inelastic and fusion
reactions (for the hard collisions). Theoretical models for description of the reaction
types involve extensive use of conservative ion-ion potential in conjunction with
the dissipation of energy, i.e. the transformation of the translational energy into
intrinsic energies of the nuclei. Often it is difficult to identify whether the reaction
of interest is mainly controlled by the ion-ion potential or by the dissipation of
energy. However, for the elastic and complete fusion, the ion-ion potential has been
granted the central position in most theoretical approaches [1].

The investigation of the fusion of two heavy nuclei below the Coulomb barrier
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is interesting because it can have important implications concerning the potential
energy surface governing the process and it is also important for astrophysics. The
big surprise in this field was that the fusion cross sections below barrier are much
higher than expected [2]. In particular, for fusion at near barrier energies, the inci-
dence of a particle on a one dimensional potential barrier is the basic aspect of most
models [3]. However, a number of recent experiments [4] have clearly shown that the
use of a local one dimensional potential is quite inadequate for the understanding
of sub-barrier fusion.

A very good review concerning the interpretation of sub-barrier fusion has been
given by Dasso et al. [2]. They described the approach based on the well-known
channel coupling procedure, formulated in the frame of two coupled differential
equations for the s state in one dimensional space. The purpose of the present paper
is to extend this approach to three dimensions and to enlarge the investigation to
states with angular momentum l /=0 [5].

2. Coupled channel formulation

The coupled channel formalism for direct reaction processes is given in detail
in Ref. 6. The total wave function Ψ is expanded in terms of channel states φα

and the radial functions Gα(r) and substituted in the Schrödinger equation. One
obtains

d2Gα

dr2
+

2µα

h̄2

(

Eα − V ef
α (r)

)

Gα =
2µα

h̄2

∑

β /=α

V cpl
βα (r)Gβ (1)

with

V ef
α (r) =

h̄2

2µα

lα(lα + 1)

r2
+ < ϕα | V | ϕ′

α > (2)

V cpl
αβ (r) =< ϕα | V | ϕβ > α/=β. (3)

V is the interaction energy while, for a given channel α, µα is the reduced mass, lα
is the angular momentum and Eα is the relative energy:

Eα = E +Qα (4)

where Qα is the reaction Q-value.

The solutions of the coupled equations (1) are usually obtained by requiring the
boundary condition Gα → 0 at the origin and matching to the asymptotic form of
ingoing wave of unit norm in the entrance channel and of outgoing radial waves in
other channels. The coefficients of the outgoing waves then determine the various
fusion cross sections.
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3. Two-state approximation

We assume equal coupling to the ground state V cpl for all channels, and we ne-
glect other cross-channel couplings. Then the coupled equations (1) can be replaced
by the following system:

(

d2

dr2
+ f1(r)

)

G1(r) = B12(r)G2(r) (5)

(

d2

dr2
+ f2(r)

)

G2(r) = B12(r)G1(r) (6)

where

fα(r) =
2µαEα

h̄2
−

lα(lα + 1)

r2
−

2µα

h̄2
Vαα(r) (7)

Bαβ(r) =
2µα

h̄2
V cpl
αβ (r), α /=β. (8)

In this paper, we shall start from the results obtained by a separation of the
equations (7) to show that simplifications of this problems is, in principle, possible
with a direct determination of various cross sections. Three cases can be considered:

(a) the non-resonance case when E1 /=E2, V11 /=V22;

(b) the near-resonance case with E1 = E2, V11 /=V22, lα = lβ ;

(c) the exact resonance case E1 = E2, V11 = V22.

The present study is restricted to the last two cases for which the system of
coupled equations (5) and (6) can be completely separated. The scattering prob-
lem is solved via two separated equations which are obtained using the following
transformation [8]:

X(a) =

[

1− a 1 + a
−(1 + a) 1− a

]

(9)

where the quantity a is the root of the equation:

(f2(r)− f1(r)) a
2 − 4B12(r)a− (f2(r)− f1(r)) = 0. (10)

a is also defined by:

a = 2γ ±
√

1 + 4γ2 (11)

with

γ =
B12(r)

f2(r)− f1(r)
. (12)
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The separated equations of the system (5), (6) are

(

d2

dr2
+ F±(r)

)

Z± = 0 (13)

where

F±(r) =
1

2
(f1 + f2)±

1

2

√

(f1 − f2)2 + 4B2
12. (14)

The functions G1 and G2 in Eqs. (5) and (6) may then be recovered by the inverse
transformation :

[

G1

G2

]

= X−1

[

Z+

Z−

]

. (15)

We assume that at large distance the potentials Vαα(r) and V cpl
αβ (r) are gener-

ally expected to become negligible compared to the centrifugal term, so that the
asymptotic form of Z± will be :

Z± ∼ sin

(

krα −
lαπ

2
+ η±lα

)

(16)

where η±lα are the proper phase shifts and kα is the asymptotic wave number

k2α =
2µαEα

h̄2
. (17)

The JWB approximation of the uncoupled integral equations determining the
proper phase shift gives [11]:

η±lα = (2l + 1)α
π

4
− kαr

±

0 +

∞
∫

r±
0

[

F±
1/2

1 − kα

]

dr (18)

where F±

1 differs from F± only in the replacement of lα(lα+1) by (lα+1/2)2, and
r±0 are the zeros of F±

1 .

In the matrix notation, the asymptotic forms are

Z ∼ e−ikαrI − eikαrS (19)

where S = exp (−2iη±lα). Using the inverse transformation the asymptotic forms of
the functions G(r) are :

G ≈ e−ikαrI − eikαrS
′

, (20)

where

S
′

= XSX+. (21)
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With the transmission matrix T defined by

T± = 1− exp (2iη±l ) (22)

we obtain :

T12 = T21 =
1− a2

1 + a2

[

1

2
(T+ − T−)

]

(23)

T11 =
1

2
(T+ + T−)−

a

1 + a2
(T+ − T−) (24)

T22 =
1

2
(T+ + T−) +

a

1 + a2
(T+ − T−). (25)

These results lead directly to the elastic and partial inelastic cross sections:

Q12
lα =

π

k2α
(2lα + 1)

[

1− a2

1 + a2

]2

sin2 (η+lα − η−lα) (26)

Q11
lα =

2π

k2α
(2lα + 1)

[

(1− a)2

1 + a2
sin2 η+lα +

(1 + a)2

1 + a2
sin2 η−lα

]

−Q12
lα . (27)

4. Model calculations

In this Section we use the above model to estimate the magnitude of effects that
are expected in heavy-ion fusion reactions. We assume lα = l, and Vαα and Bαβ of
a Gaussian form:

Vαα = Vα exp (−r2/2σ2), α = 1, 2 (28)

Bαβ = F exp (−r2/2σ2), α /=β. (29)

In the following we shall use units of amu, MeV and fm for mass, energy and
distance, respectively.

The calculation procedure is to evaluate first the roots r±0 of F±

i by using the
fixed-point iteration method, then to calculate the proper phase shifts, which are
defined in Eq. (18) by using the Simpson integration method, and finally to obtain
the cross sections from Eqs. (26) and (27).

4.1. Effects of chanell coupling

First we chosse a reference set of parameters: µ = 1, V1 = V2 = 0, E1 = 10 and
Q = 0 which characterize the exact resonance case. From Eq. (10), we deduce that
a = 0 and Eqs. (5) and (6) can always be separated. The corresponding result will
merely serve for comparision to the results derived in other cases.
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Fig. 1. Partial inelastic cross section Q12
l for different values of the coupling strength

F in the exact resonance case. (a) F = 2, 4 and 6; (b) F = 10 and 12. The
parameters are: µ = 1, V1 = V2 = 0, E1 = 10, σ = 6.
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The partial inelastic cross sections of sub- and above-barrier reactions for F=2,
4, 6, 10, 12, are plotted in Fig. 1. It has been shown [1-10] that for exact resonance
collisions, as the strenght of coupling is increased from weak coupling, the transfer
probability increases rapidly, then reaches a saturation stage, and finally behaves
in an oscillatory manner. This result is clearly illustrated in Fig. 2 where the
partial inelastic cross section Q12

l is plotted versus F for l=0, 5, 10. The oscillatory
behaviour is more pronounced for larger values of l.

Next we fix the entrance channel potential V1 and the coupling strength F and
introduce different potentials V2 in the excited channel (near-resonance case). In
this case the function

γ =
F

V1 − V2

is independent of r and the quantity a in Eq. (10) is also independent of r. Therefore
Eqs. (5) and (6) may be separated. In the case V1 = 10, V2 = 8, 12 the quantity
C = [(1 − a2)/(1 + a2)]2= 0.8. If V1 = V2, we obtain C = 1. The partial inelastic
cross sections for F= 2, versus the angular momentum l are shown in Fig. 3. One
can see the oscillatory behaviour of the partial inelastic cross sections as l increases.

Fig. 2. Partial inelastic cross section Q12
l for l = 0, 5, 10 versus the magnitude of

the coupling strength F in the exact resonance case. The parameters are: µ = 1,
V1 = V2 = 0, E1 = 10, σ = 6.
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Fig. 3. Inelastic partial cross section Q12
l for different values of the barrier height

V2 versus the angular momentum l. The parameters are: µ = 1, V1 = 10, E1 = 10,
V2 = 8, 10, 12, σ = 6.

4.2. Estimates for sub-barrier fusion reactions

In order to illustrate the present method with our schematic model, we consider
a set of parameters designed to model the collision of two Ni isotopes at energies
around the barrier region of 100 MeV. Let us further assume that the Q value
corresponding to these two channel is almost zero.

Table 1 shows typical values of the parameters rb, Vb and lcut for these system
58Ni+58Ni. The reaction has been studied experimentally [10].

TABLE 1.
Assumed values of parameters in the study of 58Ni+58Ni collisions.

Barrier radius rb (fm) 10.8

Barrier height Vb (MeV) 98.0

Number of contributing partial waves lcut 5

In Fig. 4 we display the inelastic cross section versus the angular momentum l in
the exact resonance case (Q=0) for F=2, 4, 6. It can be seen how interactions of few
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MeV can change the behaviour of the inelastic cross section function. Interactions
of such strength inside the barrier are not unrealistic.

Fig. 4. Effect of the magnitude of coupling strength F on the inelastic cross section
in the exact resonance. The parameters are simulated to the s-wave potential for
58Ni -58Ni: µ = 29, V1 = V2 = 100, F = 2, 4, 6, σ = 3, E1 = 100, Q = 0.

The results of calculations shown in Fig. 5 were obtained by fixing the coupling
strength F (F = 2) and by varying barrier V2 of the excited channel. The results
show the same general features as those shown in Fig. 3. The enhancement and
attenuation of the inelastic cross section in two-state model is really a general effect
and may affect the magnitude of the conventional resonances or the threshold effect
in fusion.
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Fig. 5. Effect of the barrier height variation on inelastic partial cross section Q12
l

keeping the entrance channel barrier fixed. The parameters are: µ = 29, V1 = 100,
V2 = 98, 100, 102, F = 2, σ = 3, E1 = 100.

Figure 6. shows the results of calculation where the number of contributing
partial waves was fixed (lcut = 5). The value of σ = 3 was determined by fitting
a typical Ni-Ni s-wave potential barrier which has a height close to 100 MeV [10].
We noted that between the two values of energies E1 = V1 ± F the inelastic cross
section Q12

tot (V1 > V2), while the opposite is true outside this energy range. This
agrees with the intuitive idea that the system prefers the tunelling to the channel
which presents the lowest barrier. This result is similar to that obtained by Dasso et
al. [10] for the total probability for transmission. Fig. 6 was plotted in a logarithmic
scale to illustrate the enhancement of inelastic cross section below the barrier as
opposed to the reduction above.
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Fig. 6. Effect of the barrier height variation on the total inelastic cross section
∑

l Q
12
l (lcut = 5) keeping the entrance channel barrier fixed in the exact resonance

case. The parameters are: µ = 29, V1 = 100, V2 = 98, 100, 102, F = 2, σ = 3.

5. Conclusions

In this work we consider a coupled-channel framework for computing inelastic
cross section for heavy ions.

For the Gaussian forms of the diagonal and coupling potentials, we have shown
the effect of the magnitude of coupling strength for heavy ions. The treatment was
extended to the three dimensional case that allows the investigation to states with
l = 0.

The above description of the ”channel coupling procedure” is by necessity very
schematic. Only two levels were considered and Q was assumed to be zero. However,
it still presents the essential features of the sub-barrier fusion. For more details we
have calculated the sub-barrier inelastic cross section for the system 58Ni+58Ni by
using the schematic model calculations.

The inelastic cross section turns out to be the average of two uncoupled equa-
tions, Eqs. (5) and (6). It follows that the existence of two channels, coupled to
each other with a strength F , can be expressed in terms of the initial configurations
of the separated potential barrier. The first one corresponds to an increase and the
second one to a decrease of F .
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More generally speaking, the results obtained in this work are useful in the sense
that they can set up a larger base to approach the problem of coupled differential
equations, and to provide a method of avoiding the burden of computational work.

The method is described in the frame of exact and non-exact resonance cases.
However, extension to a non resonance case is possible at the cost of more compli-
cations, and is in progress. It may be noted that the two-state approximation is
flexible enough to be adapted to many cases [12].
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NEELASTIČNI UDARNI PRESJECI U APROKSIMACIJI DVAJU STANJA
PRI FUZIJI TEŠKIH IONA ISPOD I IZNAD BARIJERE

SMAIL BOUGOUFFA, XUAN CHUAN CAO i PAUL FAUCHER

URA 1362 du CNRS, Observatoire de la Cote d’Azur, BP 229, 06304 Nice cedex, France

UDK 539.17

PACS 24.10.Eq, 25.70.Jj

Jednadžbe vezanih kanala za penetraciju barijere razdvojene su upotrebom teorije
vezanih diferencijalnih jednadžbi, a fazni pomaci brojčano izvrijednjeni u JWBK
aproksimaciji. Studiran je efekt jačine vezanja. Dijagonalni potencijali i potencijal
vezanja u tri dimenzije reprezentirani su Gaussovom formom u računu neelastičnog
udarnog presjeka za 58Ni–58Ni sistem u aproksimaciji dva stanja.
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