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Interpretations of various quantum-mechanical, theoretical and experimental re-
sults suggest the existence of causal faster-than-light effects. To show how such
effects can be reconciled with special relativity, we give an example of a classical
causal system with local, covariant equations of motion. Its retarded solutions ex-
hibit causal faster-than-light effects. Certain properties of these solutions propagate
almost according to the Klein-Gordon equation and not faster than light.

1. Introduction

Many interpretations of quantum-mechanical theoretical results suggest the con-
jecture that there are changes in the state of a physical system that propagate with
infinite speed from their sources, the so-called instantaneous effects [1-4]. Various
experimentally observed violations of Bell’s inequality [1,5] support this conjec-
ture; they suggest the existence of causal effects that propagate faster than light
(CFTLE).

According to special relativity, if a source at the time-space point (ct1, ~r1) causes
CFTLE at (ct2, ~r2) so that 0 ≤ t2 − t1 < |~r2 − ~r1|/c, then in an inertial reference

frame K
′

, moving with relative velocity ~v such that t2 − t1 < c−2~v · (~r2 − ~r1), the
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corresponding time-space points (ct
′

1, ~r1
′

) and (ct
′

2, ~r2
′

) are such that t
′

2 < t
′

1, i.e.,

in K
′

the effect precedes its cause. This fact has two important consequences:

(i) It seems impossible to test directly by measurement whether CFTLE really
exist. Namely, were it possible that the source at (ct1, ~r1) and CFTLE at (ct2, ~r2)
each emits or scatters an electromagnetic wave, then, when observing these two
electromagnetic signals from the inertial reference frame K

′

, we would see conse-
quences preceding their causes. So far there have been no experimental indications

that the time order of the cause and of the consequence depends on the motion of

observer. Thus, if we use time-varying sources that also emit or scatter electromag-
netic waves, it follows that CFTLE, which they are possibly causing, cannot be
directly observed and utilized for transmitting signals faster then light.

(ii) Suppose that we can conclude that CFTLE exist by interpreting certain
quantum-mechanical phenomena of a given physical system. Then, from special
relativity, we expect to conclude that there are some non-causal effects if we inter-
prete the same phenomena when the system moves with certain uniform velocity.
But this is not the case: no interpretation of quantum mechanical phenomena or

theoretical results suggests that there exist physical systems where changes of the

state precede their causes [1-4]. So, there are two possibilites: either CFTLE do not
exist - they are just theoretical figments, or there is an open question how are we
to apply, understand or possibly augment the principles of special relativity so as
to encompass physical systems that exhibit CFTLE but no non-causal effects; e.g.,
do we have to introduce a preferred frame of reference to this end. The possibil-
ity that CTFLE suggested by quantum mechanics imply that all inertial reference
frames are not equivalent has been pointed out by Eberhard [6]; and according to
Hardy [7], CFTLE are “most naturally incorporated into a theory in which there
is a special frame of reference.” Our aim is to comment on this open question of
theoretical physics and to point out an answer.

Relativistic field theories, such as classical electrodynamics and quantum field
theories, study covariant relations between the effects at (ct2, ~r2) that are caused
solely by sources at such time-space points (ct1, ~r1) that satisfy the Einstein causal-
ity condition |~r2 − ~r1|/c ≤ t2 − t1, the so-called locality condition. Therefore, such
effects and their sources may be used to model observable effects and transmission
of signals. The fields in relativistic field theories depend on the four independent
time-space variables and satisfy covariant equations of motion that are local in time-
space, i.e., they relate only the values of fields and of a finite number of their time
and space derivatives computed an the same time-space point. Classical relativistic
field theories do not exhibit CFTLE, but after quantization the interpretations of
the results obtained suggest the existence of CFTLE.

If we take CFTLE as real and not just as theoretical artifacts, we have to pre-
sume that there are causal physical systems1 whose states exhibit CFTLE, and
the observable properties of which are quantitatively well described by quantum

1We call a physical system, its phenomena and its mathematical model causal if no changes of
its state whatsoever, whether observable or non-observable, precede their causes. If real physical
system were not causal, there would be no “free will,” in experiments our choices of causes would
be preordained by the preceding changes of their states.

94 FIZIKA B 3 (1994) 2, 93–102
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field theories. The problem is how to construct mathematical models of such hy-
pothetical, causal physical systems in such a way that two conditions are met in
any inertial reference frame: (i) the equations of motion and initial and boundary
conditions are such that states (i.e., their solutions) exhibit CFTLE implied by
quantum-mechanical correlations but no non-causal effects, and (ii) the observable
properties of state can be defined in such a way that they do not propagate faster
than light and may be described with sufficient precision through fields determined
by quantum field theories.

To accomplish such a construction, the de Broglie-Bohm causal interpretation of
relativistic quantum fields [8,9] uses non-covariant and non-local partial differential
equations of motion. The resulting theory exhibits CFTLE and yields Lorentz-
covariant predictions of quantum field theories, but it ignores the first postulate
of relativity [10] that forbids a preferred frame of reference implied by its non-
covariant equations of motion. And it is not clear whether the de Broglie-Bohm
theory can be reformulated so as to make it abide by the principle of locality of
the basic equations of motion. So, this theory raises two basic theoretical ques-
tions: do CFTLE, suggested by interpretations of quantum-mechanical results and
experimentally observed correlations, imply that: (i) there is a preferred frame of
reference, and (ii) we have to abandon the principle that the basic equations of
motion are local in time-space. According to Itzykson and Zuber [11], this principle
of locality of basic equations is an important ingredient of modern field theories.
A physical model, whose basic equations of motion relate directly the values of the
state function at two distant time-space points, invites the question what goes on in
between. Only an explanation local in time-space may be considered as complete.
E.g., as Isaac Newton pointed out regarding gravity: “that one body may act upon
another at a distance through a vacuum without the mediation of anything else,
by and through which their action and may be conveyed from one to another, is to
me so great an absurdity that I believe no man ... can ever fall into it” (see, e.g.,
Vigier [12]).

It is our purpose to point out that if a causal physical system that displays
CFTLE existed, that would, in general, not necessarily imply a preferred frame of
reference and/or that the basic equations of motion are not local in time-space.
We will show that CFTLE are not incompatible with special relativity and the
traditional belief that the basic physical phenomena are causal and local in time-
space. To demonstrate this, we will put forward an example of explicitly solvable,
linear, local and covariant equations of motion of a classical, causal system with
a local Lagrangian density. The states of this system display CFTLE, though at
each time-space point a certain property of them is defined in such a way that it
does not propagate faster than light and closely satisfies the Klein-Gordon equa-
tion (the partial-differential equation satisfied by the Feynman propagator for a
spin-0 boson and so governing the local propagation of free spin-0 bosons in quan-
tum field theories [11]). Such a system is an analogue to the nonrelativistic rare
gas that propagates changes of fluid-dynamics variables almost according to the
linearized Euler partial differential equations with a finite speed of sound, though
its states, which evolve according to the linearized Boltzmann equation, respond
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almost immediately everywhere to any local source due to the unlimited speeds of
gas particles, (see, e.g., Ref. 13).

2. A classical model

2.1. Covariant transport process

Motivated by the kinetic theory of gases, we make the following assumptions:
The state of physical system considered is given by a scalar, complex-valued func-
tion Ψ(x, p) of the time-space variable x = (ct, ~r ) ∈ ℜ1,3 and of the four-momentum
variable p = (p0, ~p ) ∈ ℜ1,3. Its equation of motion is a local, covariant transport
equation

p · ∇Ψ = λ−1S−1Ψ+ S0Ψ+Q, (1)

where: (i) p · ∇ = c−1p0∂/∂t + ~p·∇ is the covariant, substantial time derivative.
(ii) S−1 and S0 are two scattering operators that act on the state Ψ(x, p) as if it
were solely a function of the four-momentum variable p; they commute with the
ortochronous Lorentz transformations to make transport equation (1) covariant.
(iii) The positive parameter λ regulates the strength of scattering by S−1 and makes
it predominant as λ tends toward zero, making thereby certain four-momentum
averages of Ψ(x, p) obey the Klein-Gordon partial differential equation in the limit
λ = 0 [14]. (iv) Q(x, p) are the independent sources.

Since we are going to study the causal dependence of state Ψ(x, p) on the changes
of independent sources Q(x, p) and equation of motion (1) is linear, it is reasonable
to assume: (A) The independent sources Q(x, p) are localized within a sphere
centered at the origin, of a radius R0 > 0. They are absent before the time instant
t
′

and after the time instant t
′′

> t
′

. (B) The corresponding state Ψ(x, p) satisfies
the following initial and boundary conditions:

Ψ(x, p) = 0 if t < t
′

, (2)

and Ψ(x, p) = 0 if |~r | is sufficiently large and either p0 /= 0 or p0 = 0 and ~p · ~r < 0.
Thus, Ψ(x, p) = 0 if |~r | → ∞ in such a way that ~p · ~r < 0. Therefore, there are no
incoming states at any time instant.

In what follows, we consider the explicit retarded solutions to a particulary
simple local covariant transport equation (1) to show the existence of a classical
causal physical system with covariant and local, linear equations of motion, which
displays CFTLE and propagates certain property of the state Ψ(x, p) (which we
will refer to as the signal-field) not faster than light and almost like the retarded,
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Klein-Gordon Green’s function in the limit λ → 0. The specifications of this system
are:

(i) The scattering operator

S−1Ψ = f0(p · p)Ip′ f∗
0 (p

′ · p′

)Ψ(x, p
′

)

−f1(p · p)p · Ip′ f∗
1 (p

′ · p′

)p
′

Ψ(x, p
′

)−Ψ(x, p), (3)

where p · p = [p0]2 − |~p |2;

fj(y) = Aj(µ, ǫ) exp [−(y + 4µ−2)2/2ǫ2], j = 0, 1, (4)

with Aj(µ, ǫ) being positive normalization factors such that

π2

∞
∫

0

y|f0(−y)|2dy =
1

4
π2

∞
∫

0

y2|f1(−y)|2dy = 1, (5)

and µ and ǫ are two positive parameters; the integral over four-momentum,

IpF (p) = lim
R→∞

R
∫

−R

dy

∫

|~p|2≤R2−y2

F (iy, ~p )d3p, (6)

is defined for any function F (p) = F (p0, ~p ) such that the limit (6) exists. The values
of Ψ(x, p) for complex values of the four-momentum variable p are defined by the
analytic continuation of Ψ(x, p) for p ∈ ℜ1,3. When Wick’s rotation is permitted,
the integral (6) of F (p) over the four-momentum variable p is equivalent to the
Lorentz-invariant, symmetric four-integral of F (p) over p.

(ii) The scattering operator S0 is the identity operator, i.e.,

S0Ψ = Ψ(x, p). (7)

(iii) The independent sources Q(x, p) depend on the four-momentum p as fol-
lows:

Q(x, p) = f0(p · p)ϕ(x), (8)

with ϕ(x), x ∈ ℜ1,3, being a scalar, complex-valued signal-source localized within

a sphere centered at the origin with radius R0 > 0 and inactive before t = t
′

and
after t = t

′′

. One can show that there is a local, covariant Lagrangian density
corresponding to the equations of motion (1)− (8) [14].

FIZIKA B 3 (1994) 2, 93–102 97
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2.2. Signal-field and its propagation

We assume that all observable and measurable properties of the state Ψ(x, p)
of the considered system are determined through its signal field

ϕ[x; Ψ] = Ipf
∗
0 (p · p)Ψ(x, p), x ∈ ℜ1,3, (9)

an analogue of the fluid-dynamics variables in kinetic theory. To get an explicit
expression for the signal-field ϕ[x; Ψ] calculated from the equations of motion (1)-
(8), we choose the parameter ǫ so small that it suffices to take into account only
the zero-order terms in ǫ. We obtain the following covariant relation between the
signal field ϕ[x; Ψ] and its source ϕ(x):

ϕ[x; Ψ] = −ϕ(x) + [C(λ)GKG(x;µλ)− Gλ(x)] ∗ ∇ · ∇ϕ(x), (10)

where ∗ denotes convolution with respect to the time-space variable x;

GKG(x;µ) =
Θ(t)

2π

[

δ(x · x) + µJ1(µ
√
x · x)

2
√
x · x Θ(x · x)

]

(11)

is the retarded, Klein-Gordon-Green’s function, with x · x = c2t2 − |~r |2 and the
unit step function Θ(t < 0) = 0 and Θ(t ≥ 0) = 1;

µλ = µ
√
2(1 +

√
1− 4λ)−1/2, C(λ) = 1 + λ/

√
1− 4λ,

Gλ(x) =
2λ

π(1− λ)

∞
∫

1

√
y − 1GKG(x,

1− λ

2λ
µ
√
y)

(y − y1)(y − y2)
dy, (12)

y1,2 =
2λ

(1− λ)2
[1±

√
1− 4λ] ∈ [0, 1),

provided λ <
√
5 − 2. From Eqs. (10) − (12) one can show that the value of the

signal-source ϕ(x) at x = (ct1, ~r1) may contribute to the value of the signal-field
ϕ[x; Ψ] carried by the state Ψ(x, p) at x = (ct2, ~r2) only if the relativistic causality
condition

|~r2 − ~r1| ≤ c(t2 − t1) (13)

is satisfied. Hence the scalar, complex-valued state Ψ(x, p), which is produced by
the signal-source ϕ(x), does not propagate faster than light the signal field ϕ[x; Ψ];
in particular, from (8) and (13) one obtains

98 FIZIKA B 3 (1994) 2, 93–102
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ϕ[x; Ψ] = 0 if |~r | > R0 + c(t− t
′

). (14)

In the limit λ → 0, the behaviour of the Green’s function GKG(x;µ) for large µ
implies that Gλ(x) = O(λ1/2). Thus, in the limit λ → 0, the signal field is given by

ϕ[x; Ψ] = −µ2GKG(x;µ) ∗ ϕ(x), (15)

and it satisfies the Klein-Gordon equation

∇ · ∇ϕ[x; Ψ] + µ2ϕ[x; Ψ] = −µ2ϕ(x). (16)

2.3. Causal faster-than-light effects

Taking account of Eqs. (1), (2), (8) and (14), we can express the state Ψ(x, p)
in terms of the signal-source ϕ(x) and signal-field ϕ[x; Ψ] as

Ψ(x, p) = Θ(t− t
′

)

±∞
∫

0

e−(λ−1−1)yq(x− yp, p)dy, (17)

with

q(x, p) = f0(p · p){ϕ(x) + λ−1ϕ[x; Ψ]}

−(µ/λ)f1(p · p)[C(λ)GKG(x;µλ)− Gλ(x)] ∗ p · ∇ϕ(x), (18)

where the upper limit is +∞ if p0 ≥ 0, and −∞ if p0 < 0 [13]. So the values of
q(x, p) and, therefore, the values of the signal-source ϕ(x) at x = (ct1, ~r1) affect
instantaneously the values of the state Ψ(x, p) for certain four-momenta p = (p0 =
0, ~p ) at x = (ct2, ~r2), t2 = t1, regardless of the distance |~r2 − ~r1|. Therefore,
there exist instantaneous effects of the signal-source ϕ(x) on the state Ψ(x, p) of
the causal physical system considered. In addition, the relation (17) shows that the
value of the signal-source ϕ(x) at x = (ct1, ~r1) affects the state Ψ(x, p) for certain
values of four-momentum p at x = (ct2, ~r2), t2 > t1, however small is the time
interval t2 − t1 and/or however large is the distance |~r2 − ~r1|. Therefore, the state
Ψ(x, p) displays CFTLE due to the signal-source ϕ(x). For t2 > t1 and p0 < 0
the effects of signal-source ϕ(x) on the state Ψ(x, p) do not decrease with distance
|~r2 − ~r1|; but from Eqs. (2), (14), (17) and (18),

Ψ(x, p) = 0 if |~r| > R0 +max(1, |~p/p0|)c(t− t
′

). (19)
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Thus, we have demonstrated that one can construct classical, linear, covariant equa-
tions of motion of a causal physical system with a local and covariant Lagrangian
density, whose scalar, complex-valued state Ψ(x, p) exhibits CFTLE, though the
corresponding signal-field ϕ[x; Ψ], which determines the observable properties of
the state Ψ(x, p), does not propagate faster than light and satisfies closely the
Klein-Gordon equation as the parameter λ → 0.

We obtained similar results also for analogous models of causal physical systems
with local and covariant equations of motion whose states Ψ(x, p) are spinor or
four-vector, complex-valued fields of x, p ∈ ℜ1,3. These classical models with local,
covariant Lagrangian densities display CFTLE but their solutions propagate certain
properties of their states not faster than light and almost like the Dirac, Proca or
Maxwell partial differential equations when λ → 0.

3. Concluding remarks

We have shown that it is possible to reconcile classically causal faster-than-
light effects, properties of state that do not propagate faster than light, and special
relativity without abandoning our traditional belief that physical phenomena are
causal1 and basic equations of motion local in time-space and covariant. To this
end we put forward, in effect, a new hypothesis: Physical phenomena are due to
streaming and scattering of hypothetical pointlike entities, their speeds c|~p/p0| are
not bounded and are causing CTFLE. The basic equations of motion are local and
covariant transport equations such as Eq. (1), the partial differential equations of
field theories providing only an averaged, macroscopic information that suffices to
explain the experimental results obtained so far. That possibility was hinted at
already by Feynman about thirty years ago [15].

The reason why the presented transport-theoretical model exhibits only CFTLE
and never non-causal effects as expected by direct application of the Lorentz time-
space transformations is as follows: In classical relativistic field theories, when
studying how fields depend on their sources through certian linear, covariant equa-
tions of motion, it seems physically reasonable to make the following two covariant
assumptions: (A) The sources are absent (i) before an initial time instant t

′

, (ii)

after certain time instant t
′′

> t
′

, and (iii) outside a sphere with radius R0 cen-

tered at a point ~r0. (B) There are no fields (i) before the time instant t
′

, and (ii)

outside the sphere with radius R = R0 + c(t − t
′

), t ≥ t
′

, and centered at the
point ~r0. As a consequence, the relation between such fields and their sources is
covariant, since equations of motion, and the initial and boundary conditions are
all covariant. In our case, the signal-source ϕ(x) and the signal-field ϕ[x; Ψ] do
satisfy such covariant assumptions, and dependence of the signal-field ϕ[x; Ψ] on
the signal-source ϕ(x) is covariant. In contrast, the state Ψ(x, p) satisfies the initial
and boundary conditions (2) that are not covariant, though the assumed changes of
independent sources Q(x, p) defined by (8) are covariant; as a consequence, the re-
lation between the state Ψ(x, p) and its source Q(x, p) is not covariant. In contrast
to the de Broglie-Bohm theory [8,9] that uses non-covariant equations of motion
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to explain how a physical system can exhibit solely CFTLE and no non-causal ef-
fects, the proposed transport-theoretical model does not need a preferred inertial
reference frame to explain such paradoxical phenomena. To this end it uses only
non-covariant initial and boundary conditions for separating the part of the state
due to the changes of independent sources from the part of the state due to the
incoming states.

Two questions remain open: (A) Which transport-theoretical extension of clas-
sical field theories are relevant, i.e., which particular scattering operators S−1 and
S0 and independent sources Q correspond to real physical phenomena? (B) Are
we to quantize, if possible, the proposed transport theory through path-integral
method, or simply by replacing the Feynman propagators of quantum field the-
ories with propagators of those transport-theoretical signal-fields that satisfy in
the strong scattering limit (λ → 0) the same basic field equation as the Feynman
propagators do, namely the Klein-Gordon, Dirac or Proca equations [11].

Acknowledgement

The authors are grateful to their colleague M. Polǰsak for many helpful remarks.
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14) M. Ribarič and L. Šušteršič, Transport Theory and Statistical Physics, in print (1995);

15) R. P. Feynman, R. B. Leighton and M. Sands, The Feynman Lectures on Physics, Vol.
II (Addison-Wesley, Reading, Mass., 1965), Sect. 12-7.

SPECIJALNA TEORIJA RELATIVNOSTI I KAUZALNI
BRŽI-OD-SVJETLOSTI UČINCI

MARIJAN RIBARIČ i LUKA ŠUŠTERŠIČ

Jožef Stefan Institute, University of Ljubljana, 61111 Ljubljana, Slovenia

UDK 530.12

PACS 03.30.+p, 03.65.Bz, 11.10.Kk, 05.60.+W

Tumačenje različitih kvantno-mehaničkih, teorijskih i eksperimentalnih rezultata
ukazuje na postojanje kauzalnih bržih-od-svjetlosti učinaka. Da bi pokazali kako
se ti učinci mogu uskladiti sa specijalnom teorijom relativnosti, navodimo primjer
klasičnoga kauzalnog sustava s lokalnim, kovarijantnim jednadžbama gibanja, čija
retardirana rješenja pokazuju kauzalne brže-od-svjetlosti učinke. Neka svojstva tih
rješenja šire se gotovo prema Klein-Gordonovoj jednadžbi, ali ne brže od svjetlosti.
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