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The cold fission barriers of heavy and superheavy nuclei (Z = 80 − 120) are com-
puted using two macroscopic models, the Yukawa-plus-exponential and the prox-
imity potential. No shell and pairing corrections have been added. Unexpectedly,
the barriers are showing two maxima in a wide region of nuclei (Z = 96 − 120,
mostly neutron-deficient ones) and various mass and charge asymmetries, lower for
lighter nuclei and larger for heavier ones. The rather shallow minimum separating
the maxima can reach a depth of 37 keV in the Yukawa-plus-exponential model
and 190 keV in the proximity potential model.

1. Introduction

The interest for study of the fission and fusion barriers is motivated by a possi-
ble existence (or synthesis by fusion reactions) [1] of superheavy nuclei, and by the
production of metastable nuclear molecular states that allow testing the electrody-
namics of strong field [2]. Most of the up to now performed calculations are related
to the classical fission mechanism with elongated fragment shapes [3] rather than
the cold fission processes [4] in which the fragments are not deformed.

The purpose of the present work is to present the calculations made us-
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ing two frequently used macroscopic models, the Yukawa-plus-exponential model
(Y+EM)[5] and the proximity potential model (PPM)[6], both taking into account
the finite range of the nuclear forces. They have been developed as an alternative to
the liquid drop model (LDM) which is known to have some drawbacks like, for ex-
ample, the absence of any proximity attraction between separated nuclei at a small
distance (1 − 2 fm) within the range of nuclear forces, and the neglect of surface
diffusivity. It is generally accepted that the shape of the fission barrier (potential
energy versus separation distance) shows a smooth behaviour: from a minimum
at the ground state it increases up to a saddle point and then decreases smoothly
again. To our surprise, the present calculations show a pocket in the potential bar-
rier for a relatively low value of the separation tip distance of the fragments. Such
a pocket is known to appear as a result of the microscopic shell and pairing effects,
superposed on the macroscopic potential, causing the well known double-humped
fission barrier introduced by Strutinsky.

The strong interaction between the two nuclear fragments continues to act even
when they are separated within the range of the nuclear forces. As a result of a
competition between the nuclear attraction and the Coulomb repulsion, the total
fragment interaction energy can reach a maximum value for a certain combination
of a parent nucleus and two fragments.

A nuclear shape parametrization of two intersected spheres has been used. It
allows to describe continuously the shape transformation from one initial nucleus
to two final nuclei, by changing the separation distance between the two centers
and keeping the total volume constant. Each of the three reaction partners, the
compound fissioning nucleus and the two fragments, have been selected by imposing
the condition that they are listed in the table of atomic masses calculated by Möller
et al. [7]. In this way we can select the nuclei of practical importance, up to the
proton drip-line.

2. Yukawa-plus-exponential model extended to binary

systems with different charge densities

The shape-dependent terms of the nuclear potential energy in a LDM are the
surface energy due to strong interactions between all kind of nucleons, tending to
hold them together, and the Coulomb interaction between protons, acting in the
opposite direction. In order to take into account both the finite range of nuclear
forces and the surface diffusivity, in the Y+EM model the nuclear energy, replacing
the Myers-Swiatecki’s liquid drop model surface energy, is given by the double
folded Y+EM potential. During the cold fission process the nuclear shape is changed
starting from a spherical compound nucleus, going through two intersected spheres
with increasing separation distance between the centers and ending up with two
well separated spherical fragments. The opposite direction is followed in a fusion
reaction. The total volume of the system is conserved all the time.

The nuclear energy [5] is given by the following double volume integral:
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EY = − cs
8π2r20a

4

∫

Vn

∫

(r12
a

− 2
) exp (−r12/a)

r12/a
d3r1d

3r2, (1)

where r12 =| ~r1 − ~r2 |, a = 0.68 fm is the diffusivity parameter, cs = as(1− κI2),
as = 21.13 MeV is the surface energy constant, κ = 2.3 is the surface asymmetry
constant and r0 = 1.16 fm is the nuclear radius constant.

We take into account the difference between the charge densities of the two
fragments. This energy can be expressed [8] as a sum of two self-energies and an
interaction energy between the fragments
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The relative nuclear energy BY is normalized to the spherical shape one, E0
Y :
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where BY 1, BY 2 correspond to the two fragments and BY 12 is the interaction term.
For overlapping fragments with axial symmetry, the involved three-dimensional
integrals are calculated numerically by the Gauss-Legendre quadrature.

For a spherical compound nucleus with a radius R0 = r0A
1/3 one obtains:

E0
Y = cs0A

2/3{1− 3x2 + (1 + 1/x)[2 + 3x(1 + x)]e−2/x}, (4)

where x = a/R0.

The Coulomb energy is calculated in a similar way:
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where the first two terms are due to the individual fragments and the third one
represents their interaction. The charge densities of the compound nucleus and of
the two fragments are denoted by ρ0e, ρ1e and ρ2e, respectively.
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The relative Coulomb energy is given by:
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where BC1 and BC2 are the Coulomb relative energies of the fragments, BC12 is the
relative Coulomb interaction term (two dimensional integrals for axially symmetric
overlapping fragments), and

E0
C =

3e2Z2

5r0A1/3
(7)

is the Coulomb energy for a spherical nucleus with a mass number A.

The total deformation energy is the sum of Y+E, Coulomb and of the volume
terms:

E = EY + EC + EV . (8)

When the fragments are separated (R > Rt = R1+R2), analytical relationship are
available:
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and R is the distance between the centers of the two fragments.

3. Proximity potential

In the macroscopic model the proximity potential introduced by Blocki and
Swiatecki [6], for two separated fragments, is given by:

Epr =

∫ ∫

e(D)dxdy, (13)

where e(D) is the interaction energy per unit area between plane, parallel surfaces
at a separation D, and the integration is performed in the transverse x0y plane
perpendicular to the line of least separation.

122 FIZIKA B 3 (1994) 2, 119–133



gherghescu, greiner and poenaru: unexpected property of proximity . . .

The universal dimensionless proximity function ϕ(ζ) is introduced. It gives the
energy density e in units of 2γ, where γ is the specific surface energy of the order
of 1 MeV/fm2. One can express the least separation distance s between surfaces in
units of the surface width b of the order of 1 fm, s = ζb. Then:

e(ζb) = 2γΦ(ζ), (14)

where Φ is the interaction energy per unit area in units of 2γ. Due to the short
range of nuclear forces, Φ vanishes at large separation.

For practical calculations one has:

Epr = 4πγRΦ(ζ), (15)

where the mean curvature radius R is given by:

R =
C1C2

C1 + C2
(16)

in which Ci = Ri−b2/Ri, (i = 1, 2) are the central radii and Ri = 1.28A1/3−0.76+
0.8A−1/3 are the effective sharp radii; the subscript i refers to the two fragments
or to the compound nucleus.

The nuclear proximity function has been calculated in the Thomas-Fermi ap-
proximation with effective two-nucleon Seyler-Blanchard interaction. A good ap-
proximation to the integrated function Φ was found [6] to be:

Φ(ζ) =

{

−1.7817 + 0.927ζ + 0.01696ζ2 − 0.05148ζ3 0 ≤ ζ ≤ 1.9475
−4.41 exp(−ζ/0.7176) ζ > 1.9475

(17)

and for overlapping spheres:

Φ(ζ) = −1.7817 + 0.927 ζ + 0.143 ζ2 − 0.09 ζ3 ζ ≥ 0. (18)

The surface coefficient γ is taken as:

γ = 0.9517[1− 1.7826(1− 2Z/A)2] MeV/fm
2
. (19)

The Coulomb interaction energy expression is identical to the one calculated in
Section 2.

4. Results

Previously, we have performed similar calculation within the Y+EM at sym-
metry [9]. In this work, we consider both Y+EM and PPM and the entire range
of mass and charge asymmetries. With each of the two macroscopic models, we
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have obtained a rather wide region in the (Z, N) nuclear chart, in the heavy and
superheavy range of nuclei, characterized by the two-humped cold fission barrier
shapes. This result is a consequence of the use of the proximity potentials and will
be discussed in the next Section.

The first maximum of the potential barrier lays within a few tenths of fm beyond

the touching point R
(1)
M ≥ Rt. The second maximum appears always at a larger

separation distance between the fragments, R
(2)
M > R

(1)
M .

Fig. 1. The larger boxes represent nuclei showing two-humped cold fission barriers
in the Y+EM (upper) and PPM (lower diagram). The smaller boxes show the line
of beta-stability derived from the Green approximation. The small squares show
the border of neutron-rich nuclei according to (7).
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The boxes in the nuclear chart in Fig. 1 (upper plot for Y+EM and lower plot for
PPM) represent the compound nuclei showing a barrier shape with two maxima
for at least one pair of values of the charge and mass asymmetry parameters,
ηZ = (ZH − ZL)/Z and ηA = (AH −AL)/A.

By definition, the depth of the minimum, ∆e, situated at R = RM between the

two maxima (each of them atR
(1)
M andR

(2)
M , respectively), whereR

(1)
M < RM < R

(2)
M ,

is given by:

∆e = min[E(R
(1)
M ), E(R

(2)
M )]− E(RM ). (20)

In Table 1 we have selected the largest depths of the pockets for each even value
of Z for the Y+EM (left) and for the PPM (right) for all heavy even-even nuclei
exhibiting the two-humped barrier shapes.

TABLE 1.

The largest depths of the pockets in the cold fission potential barrier of some
even-even nuclei for Y+EM and PPM.

Y+EM PPM

Z A ZL ZH AL AH ∆e/keV A ZL ZH AL AH ∆e/keV

96 230 46 50 96 134 24 232 10 86 20 212 1

98 232 46 52 96 136 26 232 46 52 96 136 4

100 242 46 54 100 142 20 238 46 54 96 142 38

102 244 46 56 104 142 30 240 46 54 96 144 166

104 258 46 58 108 150 32 246 50 54 116 130 190

106 256 30 76 60 196 37 256 50 56 128 128 186

108 262 38 70 96 166 29 266 42 66 96 170 180

110 274 34 76 76 198 31 266 34 76 72 194 183

112 272 30 82 64 208 34 272 30 82 60 112 180

114 278 26 88 52 226 33 282 30 84 68 214 176

116 284 30 86 68 216 29 292 38 78 92 200 164

118 304 30 88 68 240 28 296 38 80 100 196 171

120 302 30 90 72 230 27 298 34 86 84 214 164

Assuming the same conditions, the complete results of calculations in the PPM
are shown in Fig. 2. In the Figs. 2a,b, the maximum values of ∆e for pairs of
values (ηZ , Z) are presented. The three-dimensional plots in Fig. 2c,d show the
corresponding mass numbers A and AL of the compound nucleus and the light
fragment, respectively.
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Fig. 2. Results obtained in the PPM for the largest values of the pocket depths ∆e:
(a) versus the charge asymmetry parameter ηZ and the atomic number Z of the
compound nucleus;
(b) the same relationship represented by boxes of a size proportional to ∆e.
In the following two plots the corresponding mass numbers of the compound nucleus
(c) and of the light fragment (d) can be seen.

The trend toward a larger value of the charge asymmetry parameter ηZ , at
which ∆e is maximum, with increasing atomic number Z of the compound nucleus
is clearly seen in Fig. 2b.

Almost the same values of the parameters ηZ appear in similar plots illustrating
the results obtained in the Y+EM. The richest elements in combinations parent
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(A,Z)-fragments (AL, ZL), (AH , ZH) leading to maximum values of ∆e are Z = 104
and Z = 106, both for the Y+EM and PPM. In the Y+EM the deepest pocket in
the barrier shape is obtained for Z = 106; it is 37 keV for ZL/ZH = 30/76 and
AL/AH = 60/196. Within the PPM the maximum is much larger: 190 keV for
Z = 106 with ZL/ZH = 50/56 and AL/AH = 128/128.

The similarity of the results obtained in both models can also be seen in Fig. 3,
where the three-dimensional plots of ∆e against the mass asymmetry ηA and the
mass number of A refer to Z = 104 and ZL = 46.

Fig. 3. The pocket depths versus the mass asymmetry ηA and the mass number
A of the compound nucleus for the isotopes of Z = 104, and the light fragment
ZL = 46 (a, b) in the PPM and (c, d) in the Y+EM.
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5. Discussion

The evolution of the two-humped barrier in the PPM with the mass number A
and the mass asymmetry ηA is ploted in Fig. 4, for Z = 104. The fragment mass
numbers AL −AH are specified. One should mention that in the Y+EM approach,
a similar behaviour is observed.

Fig. 4. Details of the PPM barrier shapes in a small region of separation distance
beyond the touching point configuration, for Z = 104 and ZL = 46. The two
numbers shown on each plot are the mass numbers of the fragments, AL and AH .

Only a small region of ∆e = E−E(Rm), including the two maxima beyond the
touching point configuration (R ≥ Rt) is plotted. The transition from one maximum
at the touching point (or very close to the touching point) toward two maxima, can
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be clearly seen. When the mass number of the light fragment AL increases from
100 to 112 and the mass number of the compound nucleus, A = AL+AH , is raised
from 240 to 245, we obtain various two-humped barrier shapes with the first barrier
height larger, equal or smaller than the second one. For a given A, the depth of the
pocket reaches its maximum value when the two heights are approximately equal.
Then, the first maximum decreases with the increase of the second one and finally
the pocket disappears. At the same time the second maximum moves away from
the touching-point configuration. The second energy hump reaches its maximum
value when the first one has almost totally disappeared.

In the following, we shall analyze the conditions that yield the two-humped
barrier shape. In the Y+EM, for separated fragments, neglecting the volume term,
the interaction energy (8) can be written as:

E(r) =
c1
r

+ c2
e−r

r
+ c3e

−r, (21)

where: r = R/a, R = Rt+D, D is the separation distance of the fragment surfaces,
and

c1 = Z1Z2e
2/a

c2 = −4(a/r0)
2√cs1cs2(4g1g2 − f2g1 − f1g2)

c3 = −4(a/r0)
2√cs1cs2g1g2.

In order to study the critical points of the function E(r), one has to calculate
its derivate with respect to r:

dE(r)

dr
= − c1

r2
− c2

e−r(r + 1)

r2
− c3e

−r (22)

in the interval of interest (r1, r2), where r1 = rt = Rt/a, and r2 ≈ rt + 1.5, taking

into account that the position of the second maximum R
(2)
M ≤ Rt + 1.0 fm. The

two functions, E(r) and dE(r)/dr are plotted in Fig. 5, for Z = 102, ZL = 38,
A = 244 and five different values of the mass asymmetry parameter in the range
AL = 76− 78.
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Fig. 5. Heights ∆e of the energy maxima above the minimum value and its deriva-
tive dE/dr in the Y+EM vs. separation distance between the fragment centers, for
Z = 102, A = 244, ZL = 38.

The derivative with respect to R has the dimension of a force, hence, up to
a multiplicative constant, one can say that dE/dr is proportional to the sum of
the repulsive Coulomb force and the attractive strong interaction. The evolution of
dE/dr is the result of the equilibrium between the two forces or the domination of
one of them over the other.

One can see (Fig. 5) that, in the case of a single maximum of the barrier at
the touching point, the Coulomb force dominates, hence the sign of the resultant
is negative. As AL increases, the maximum of the derivative reaches the Or axis,
corresponding to an inflection point of the barrier shape function (d2E/dr2 = 0).
For larger values of AL, there are two intercepts of the derivative with the Or axis.
The first root represents a minimum (the pocket) and the second one is the second
maximum. By adding more neutrons to the light fragment, the difference between
the two forces increases in favour of the attractive one, leading to the disappearance
of the pocket. Finally there is only the second maximum left.

When the two maxima are comparable, they are very close to each other. As
the second one increases, it moves away from the touching point.

Let us introduce a new variable, x, representing the separation distance between
the fragments tips, defined by:

r = rt + x. (23)
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In the region of two maxima, r ∈ (r1, r2), x is usually a small quantity, x ≪ 1.
Hence to a good approximation, we can retain only few terms in the expansion of
dE/dr around x = 0,

dE

dr
≈ ax3 + bx2 + cx+ d. (24)

It will have positive roots if the following conditions are fulfilled:

b2 − 3ac > 0

b2(4bd− c2)

27a2
+ d2 +

4c3

27a
− 2bcd

3a
< 0 (25)

a < 0, b > 0, c < 0, d > 0

where:

a = c1e
rt/6

b = c1e
rt/2 + c3

c = c1e
rt + c2 + 2c3rt

d = c1e
rt + c2 + 2c3rt.

The potential barrier will have two maxima if the conditions (25) are satisfied.

In the PPM we get a forth order polynomial for the expansion dE/dr around
x = 0. In a similar way one can obtain the relationship between the coefficients
that allow three real positive roots.

In conclusion, by studying the macroscopic cold fission or fusion barrier shapes
of heavy and superheavy nuclei with Z = 80 − 120 in a wide range of mass and
charge asymmetry in the Y+EM and PPM, we have found a whole region of mostly
neutron-deficient nuclei that show two-humped barriers for separated spherical frag-
ments. The minimum and the second maximum are relatively close to the touching
point configuration, within the range of the strong interaction. The result is due to
the used nuclear potentials; it would not show up in the Myers-Swiatecki’s liquid
drop model. The pocket between the two maxima is rather shallow: 37 keV in the
Y+EM and not larger than 190 keV in the PPM. This behaviour of a phenomeno-
logical potential, that is expected to be smooth, seems to be unphysical. The result
is a consequence of the particular expression for the nuclear energy term (replac-
ing the surface energy in the liquid drop model) that was added to the Coulomb
interaction, which is always monotonously decreasing with increasing separation
distance between the fragments.
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Fisijski bedemi teških i superteških jezgri (Z = 80 − 120) odredeni su u dva
makroskopska modela (Yukawa + eksponencijalni potencijal i blizinski potenci-
jal) ne izračunavajući korekcije ljuske i sparivanje. U širokom području jezgri
(Z = 96−120, uglavnom s manjkom neutrona), različitih masa i asimetrija naboja,
bedemi imaju dva maksimuma, koji su niži za lakše jezgre a vǐsi za teže jezgre. Plitki
minimum izmedu maksimuma doseže dubinu 37 keV u Yukawa + eksponencijalnom
modelu i 190 keV u modelu blizinskog potencijala.
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