
ISSN1330–0016

CODENFIZBE7

LETTER TO THE EDITOR

FAST PROCEDURE FOR ESTIMATING CAPACITY DIMENSION OF THE
FRACTAL OBJECTS BY THE BOX COUNTING

ALEKSANDAR MAKSIMOVIĆ, STJEPAN LUGOMER and BOŽIDAR VOJNOVIĆ

Rugjer Bošković Institute, Bijenička c. 54, 41000 Zagreb, Croatia

Received 15 February 1995

UDC 531.19

PACS 02.70.-c, 05.20.-y

A fast procedure for computing fractal dimension by the box counting is derived.
An approximation for the number of visited boxes NB(ǫ, n) as a function of n is
given. The memory requirement is calculated with this function and the scaling for
derivative ∆N(ǫ, n)/∆n ≈ const × βǫ−αn−β−1 given by Grassberger is obtained
for the non saturated segment. The procedure is tested on the calculation of frac-
tal dimension of Sierpinski triangle and the Hénon map, and compared with the
procedure of Grassberger.

A fractal objects like strange attractors are typically characterized by fractal

dimension. The fractal dimension D of a set A can be obtained from the relation

N(A, ǫ) ≈ Cǫ−D (1)

where N(A, ǫ) is the number of cubes with the edge size ǫ that contain a piece of
the fractal object and C is a positive constant [1,3]. From Eq. (1), a dimension D

FIZIKA B 4 (1995) 1, 29–37 29



maksimović et al.: fast procedure for estimating capacity . . .

(usually called capacity) can be obtained [1,4,5]:

D = lim
ǫ→0

logN(A, ǫ)

log(1/ǫ)
. (2)

In the so called box–counting algorithm one counts the minimal number of boxes—
cubes NB(ǫ) that cover the set with boxes of the size ǫ [2].

This letter gives description of the faster procedure for calculation of the fractal
dimension than the one given in Ref. 2. The memory usage is estimated by using the
best fitting function in the saturated region. From this function we obtain the same
scaling for the derivative of the number of visited boxes, as given by Grassberger
[4].

Fig. 1. The first three subdivisions of the box and labels which are used in the new
procedure.

Each of n points of a set embedded in de dimensions can be represented by a
vector with coordinates {Xi; i = 1, de}. The values of Xi are normalized to cover
the range (0, 2k − 1) and the set is covered by the grid of de dimensional cubes of
edge size 2k−m, where m = 0, . . . , k. The procedure is implemented for embedding
dimension de = 2. Every normalized vector Xi is represented by k–bits Xi =
(σi

1, . . . , σ
i
k). Figure 1 shows the first three divisions of a box. For each vector Xi

we strip the first bit σi
1. In de = 2 dimensions, combinations of pairs of bits (σ1

1 , σ
2
1)

determine which box covers this point. We adopt following combinations (σ1
1 , σ

2
1) =

{{0, 0}, {0, 1}, {1, 0}, {1, 1}} which correspond to the boxes {L0, L1, L2, L3} in Fig.
1. This is easily generalized to de embedding dimensions replacing the pairs of bits

30 FIZIKA B 4 (1995) 1, 29–37



maksimović et al.: fast procedure for estimating capacity . . .

with de–dimensional vector of bits (σ1
1 , . . . , σ

de

1 ). In the next step we strip second
bit from the vector and repeat the above procedure by looking at the pairs of them
and determine which box is occupied in the next subdivision (i.e box L01 in Fig.
1). This procedure is repeated for different boxes of the edge size 2k−m, where
m = 0, . . . , k. The first m bits from vector Xi determines in which box of size 2k−m

they belong.

Fig. 2. Plot of the logarithm of the numbers NB(ǫ;n) of non-empty boxes versus
log(1/ǫ) for Sierpinski triangle. 3: n =1 000; +: n =10 000; 2: n =40 000.

We start with one root node with four pointers, which represent four boxes in
the first division {L0, L1, L2, L3}, of the size 2

k−1. If a pointer contains special value
“NULL” there are no points in that box; otherwise it points to the structure of
the four pointers, each of them representing further subdivision of that box. Using
the first m bits of a number X as described above, we get m pointers, every one
of them showing which of the boxes is occupied in the m-th subdivision. This is
repeated for all members in the data set. In this way only one scan of the data set
is enough to remember all positions, and the one walk through the tree gives the
number of the visited boxes. The algorithm was performed in a C++ program.

The original algorithm taken from Ref. 2 was also performed in a C++ pro-
gram in order to compare the execution times of both programs. Here is the brief
description of the algorithm.

By using a bitwise operation AND and the mask M we can strip the first m
bits from x or y coordinate (which have the first m bits set to 1 and all others to
0). Thus the masking operation {x, y}&M gets the first m bits from vector {x, y}
which now have the form {(σ1

1 , . . . , σ
1
m), (σ2

1 , . . . , σ
2
m)}. Shifting the x coordinate

by 16 bits and performing a bitwise OR operation we can form a number zn =
(σ1

1 , . . . , σ
1
m, σ2

1 , . . . , σ
2
m) for each point in a data set, where m = 0, . . . , k. Distinct

FIZIKA B 4 (1995) 1, 29–37 31



maksimović et al.: fast procedure for estimating capacity . . .

zn corresponds to points in different boxes of the edge size 2k−m. Using a heapsort
algorithm we sort all zn and then count the number of distinct zn [6]. This is

essentially the algorithm described in Ref. 2, only the operation on strings is replaced

with the equivalent operation on bits which increases the speed of the computation

significantly.

Fig. 3. Plot of the logarithm of the numbers NB(ǫ;n) of non-empty boxes versus
log(1/ǫ) for Hénon attractor. 3: n =1 000; +: n =10 000; 2: n =40 000.

To compare the accuracy and the computational times for the box counting
and for our new procedure, we computed the fractal dimension dB with the above
algorithm for the two types of attractors. The first is a celebrated Hénon map [2]:

xi+1 = 1 + yi + axi, yi+1 = bxi (3)

where a = −1.4 and b = 0.3. The fractal dimension for this map is known from
estimates based on the capacity dimension [2] and the correlation dimension [3].
The second type of fractal used is Sierpinski triangle obtained from the Iterated

function system, and generated by using Random iteration algorithm [1]. The fractal
dimension of the Sierpinski triangle is log(3)/ log(2). It is obtained by using the
following set of a three affine transformations:

xi+1 = xi/2 + ak, yi+1 = yi/2 + bk (4)

with (k =1,2,3), where a1 = a2 = b1 = 1, a3 = b2 = b3 = 50, and all transforma-
tions were applied with equal probability [1,2].

When the number of filled boxes NB is equal to the length of data set n so that
all points lie in distinct boxes, the function is saturated. This part of the function

32 FIZIKA B 4 (1995) 1, 29–37



maksimović et al.: fast procedure for estimating capacity . . .

NB requires the largest part of computer memory, and values near saturation should
be disregarded when the slope of logNB versus log(1/ǫ) is calculated [2].

The number of visited boxes NB(ǫ, n) can be approximated with the function

NB(ǫk;n; ǫko) = n
1

(ǫk/ǫko)α + 1
, (5)

where ǫk is the length of the box, and ǫko is the constant for a given n. We find
that the values of the exponent αS = 1.65 ± 0.2 for the Sierpinski triangle and
αH = 1.251 ± 0.003 for the Hénon yield the best fit to the data for 14 different
lengths of n between 1 000–40 000. Figure 2 shows a log–log plot of the number
of visited boxes and the function NB(ǫk;n; ǫko) versus log(1/ǫk) for the Sierpinski

triangle, and for the three different lengths of data set. This is also illustrated in
Fig. 3 for the Hénon attractor.

However, ǫko is a function of the length n, and in the log–log plot it behaves as
a linear function of n, meaning that we approximate ǫko with the power law:

ǫko = 1/Cnγ , (6)

where C is constant and γ is invariant for the given attractor, as it was suggested
in Ref. 4. With the least square fit we obtain γS = 0.635± 0.002 for the Sierpinski

triangle and γH = 0.810± 0.001 for the Hénon attractor (see Fig. 4). Inserting Eq.
(6) in (5) one finds:

NB(ǫk;n) = n
1

(ǫkCnγ)α + 1
. (7)

TABLE 1.
Constants α and β obtained by the fitting procedure.

Attractor Sierpinski triangle Hénon
α 1.65± 0.02 1.251± 0.03
γ 0.635± 0.002 0.810± 0.001
αγ 1.056 1.008

TABLE 2.
Memory required by the program given in bytes for various values of the maximal

range k used in rescaling.

Sierpinski tringle Hénon attractor
k–range n Memory usage k–range n Memory usage
1–16 1 000 307 050 1–16 1000 258 720
1–16 10 000 2 441 140 1–16 10 000 1 724 840
1–16 40 000 8 250 000 1–16 40 000 4 855 000
1–12 106 3 155 900 1–12 106 5 600 000
1–12 107 5 025 600 1–12 107 5 700 000

FIZIKA B 4 (1995) 1, 29–37 33



maksimović et al.: fast procedure for estimating capacity . . .

TABLE 3.
The capacity dimension from Ref. 2 and the calculated one with the new

procedure for two lengths of data set n.

Capacity dimension from Ref 2 Calculated capacity dimension
n 1 000 10 000 1 000 10 000

Hénon attractor 1.32± 0.02 1.27± 0.02 1.24± 0.02 1.245± 0.008
Sierpinski triangle 1.58± 0.01 1.56± 0.03

TABLE 4.
Speed of the program execution given in seconds for two lengths of data set n.

algorithm from Ref. 2 New procedure
n 1 000 10 000 1 000 10 000

Hénon attractor 5.00 36.80 3.19 15.43
Sierpinski triangle 4.78 37.02 3.30 16.70

Table 1 gives the summary for the values of constants α and γ for these two
attractors. In the limit (ǫkCnγ)α ≫ 1 Eq. (7) gives:

NB ≈ n(ǫkCnγ)−α. (8)

This equation has the same form as the expression for the fractal dimension (apart
from the factor nγ , which is constant if one data set is examined, i.e. n is constant),
but the value of the constant α is always greater than fractal dimension because
the saturated segment lowers the slope given by the non–saturated segment.

Obviously the substitution γα − 1 = β, gives the same scaling as given in
Ref. 4 for derivative ∆N(ǫ, n)/∆n ≈ const× βǫ−αn−β−1. Finally, we can estimate
the memory required by the program. As pointed above, the program requires∑

k NB(ǫk;n) × size of Node bytes of memory, where the size of the Node is 32
bytes. The memory consumption is summarized in Table 2 for various values of the
maximal set rescaling range k.

In order to compare the values of capacity dimension, we used the same condi-
tions as in Ref. 2. Thus, only the values NB ≤ N/5 were taken into account with
the limitation that, because of poor resolution, NB is ignored for m = k, k − 1,
where k = 16. We then used the least square fit to determine dB as the slope of
logNB versus log(1/ǫ), as illustrated in Fig. 5 for the Sierpinski triangle, and for
the Hénon attracor in Fig. 6. Comparison of capacity dimension obtained by the
new procedure with the one from Ref. 2 is given in Table 3. It shows that agreement
is satisfactory in general, while for N =10 000 points the agreement is in the limit
of error. Computational times for the new procedure and the algorithm from Ref.
2 are given in Table 4.

34 FIZIKA B 4 (1995) 1, 29–37



maksimović et al.: fast procedure for estimating capacity . . .

Fig. 4. Plot of the logarithm of the log ǫko versus log n for Hénon attractor and
Sierpinski triangle. 3: Sierpinski triangle; +: Hénon attractor.

Fig. 5. Plot of logN(ǫ) versus log(1/ǫ) for Sierpinski triangle with different length
of data set N =1 000, 10 000, 40 000. Also shown is the least square fit as a full
line.

All calculations were done on PC386, while the programs were compiled with
gnu compiler which exists on many platforms. Compiler supports the virtual mem-

FIZIKA B 4 (1995) 1, 29–37 35



maksimović et al.: fast procedure for estimating capacity . . .

ory, so a large data set can be processed by means of swapping data to the disk.
With k = 16 bits used for rescaling maximal length of data set (assuming all points
in set are distinct) is ≈ 65 000; for the larger data set we must use a larger k i.e.
N < 2k.

Fig. 6. Plot of logN(ǫ) versus log(1/ǫ) for Hénon map with different length of data
set N =1 000, 10 000, 40 000. Also shown is the least square fit as a full line.

Acknowledgements

We would like to thank Nada Bosnić for very useful discussion. Eventual request
for the program please send by E–mail to: maks@olimp.irb.hr.

References

1) M. Barnsley, Fractals Everywhere (Academic Press, New York, 1988);

2) L. S. Liebovitch and T. Toth, Phys. Lett. A141 (1989) 386;

3) P. Grassberger and I. Procaccia, Phys. Rev. Lett. 50 (1983) 346;

4) P. Grassberger, Phys. Lett. A97 (1983) 224;

5) A. Giorgilli, D. Casati, L. Sironi and L. Galgani, Phys. Lett. A115 (1986) 202;

6) W. H. Press, B. P. Flanerry, S. A. Teukolsky and W. T. Vetterline, Numerical Recipes
(Cambridge Univ. Press, Cambridge, 1986).

36 FIZIKA B 4 (1995) 1, 29–37



maksimović et al.: fast procedure for estimating capacity . . .

BRZI POSTUPAK PROCJENE KAPACITIVNE DIMENZIJE FRAKTALNIH
OBJEKATA METODOM BROJANJA KVADRATA

ALEKSANDAR MAKSIMOVIĆ, STJEPAN LUGOMER I BOŽIDAR VOJNOVIĆ

Institut Rugjer Bošković, Bijenička c. 54, 41000 Zagreb, Hrvatska

UDK 531.19

PACS 02.70.-c, 05.20.-y

Izložen je brzi postupak za računanje fraktalne dimenzije pomoću metode bro-
janja kvadrata (box counting). Dana je aproksimacija broja popunjenih kvadrata
NB(ǫ, n) kao funkcija od n. Tom funkcijom izračunati su memorijski zahtjevi i do-
biveno je skaliranje Grassbergerove derivacije ∆N(ǫ, n)/∆n ≈ konst× βǫ−αn−β−1

za nezasićeno područje. Postupak je provjeren na proračunu fraktalne dimenzije za
trokut Sierpinskog i za Hénonovo preslikavanje, te je usporeden sa Grassbergerovim
postupkom.

FIZIKA B 4 (1995) 1, 29–37 37


