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Using the GWS lagrangian for electroweak interactions in the (1+1)–dimensional
case, we studied the τ–lepton tunneling through the static one–dimensional Higgs
potential. We obtained the exact solution for the Dirac τ–lepton wave functions
and the exact expression for the transmission coefficient of τ–leptons.

1. Introduction

The GSW model of electroweak interactions was developed for leptons by
Glashow [1], Salam [2] and Weinberg [3] and extended to include the quark de-
grees of freedom in Ref. 4. It is a minimal model of electroweak interactions with
respect to the number of required fields and it is characterized by the represen-
tation of weak interaction universality as a symmetry under weak isospin SU(2)W
and weak hypercharge U(1)W transformations. In order to generate the mass of the
weak gauge bosons, the Higgs mechanism for the spontaneous symmetry breaking
of the SU(2)W×U(1)W symmetry is used in such a way that the electromagnetic
gauge group U(1)EM remains conserved as a residual symmetry.

The Higgs sector of the GSW model is needed to give mass to the gauge bosons
without destroying the renormalizability of the theory. However, the mass and
strength of the self–interaction of the Higgs particle can not be given explicitely.
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The upper limit of the Higgs mass was estimated in Ref. 5 at MH < 103 GeV and
the most recent lower limit is quoted at MH > 60 GeV (See Refs. 6 and 7). For a
general review of the Higgs mechanism see Refs. 9 and 10.

The coupling of fermions to Higgs particles is proportional to the fermion
masses. The light leptons (electrons with a mass of 0.511 MeV and muons with
a mass of 105.6 MeV) are, therefore, assumed to play a minor role in the Higgs–
particle reactions. The τ–leptons with a mass of 1.87 GeV may, however, be usefull
to study the most likely interactions of the Higgs particles probably involve the
heavy quark degrees of freedom.

Due to its applications on the macroscopic scale, the Abelian gauge theory of
electromagnetism was the subject of extensive classical treatment without the use
of field quantization. The classical electromagnetic equations are solved exactly for
many particular problems in one, two or three spatial dimensions. On the other
hand, the exact classical solution for the non–Abelian gauge theories, such as the
GSW model, are much harder to find. In the present paper we present an exact
classical solutions for the problem of the τ–lepton tunneling through the static
one–dimensional Higgs potential.

2. The lepton–field equations

The GSW lagrangian, including only the terms for the free Higgs particles with
self–interaction, free τ–leptons and the lepton–Higgs interactions, after the spon-
taneous symmetry breaking and generation of the Higgs and τ–lepton masses, is
given by

L = −1

2

(

∂µϕ∂
µϕ+M2

Hϕ2
)

+
µMH√

2
ϕ3 − µ2

4
ϕ4−

−τ (γµ∂
µ +Mτ ) τ −Gτ ττϕ, (2.1)

where ϕ = ϕ(x, t) is the real scalar Higgs field with mass MH , τ = τ(x, t) is the
complex spinor τ–lepton field with the mass Mτ , µ is the Higgs self–interaction
parameter and Gτ is the lepton–Higgs coupling constant.

In the (1+1)–dimensional space the lagrangian (2.1) is given by
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, (2.2)
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where the space axis is chosen to be the z–axis for the sake of simplicity in the
particular representation of the Dirac γ–matrices, even though the results obtained
are quite general. The field equation for the pure Higgs–field with self–interaction,

∂2ϕ

∂t2
− ∂2ϕ

∂z2
+M2

Hϕ− 3µMH√
2

ϕ2 + µ2ϕ3 = 0, (2.3)

where the lepton source of Higgs–particles is neglected, admits a stable static solu-
tion of the form

ϕ± =
Mτ

Gτ

(1± tanh
MHz

2
), Mτ = Gτ

MH√
2µ

. (2.4)

The solution (2.4) is a well–known textbook case known as the kink solution.
Although very popular in the literature, it has so far not been useful in any true
or hypothetical physical applications.

It should be noted that the GSW theory the scalar Higgs field is a SU(2)–doublet
and carries hypercharge. In the unitary gauge, used in the present paper, there is in
general a singularity when ϕ = 0, and a stable GSW kink–solution is not possible.

Nevertheless, the solution (2.4), applicable to the broken vacuum of the GSW
model only, exists as a static solution to the Eq. (2.3). Therefore, a motion of
τ–leptons in the potential field proportional to (2.4), analogously to the case of
motion of leptons in the static Coulomb potentials in electrodynamics, may well be
approximately described by the present interaction model. The physical situation
here is similar to that of the hydrogen atom where the static classical solution to the
Maxwell equations, i.e. the Coulomb potential, is substituted into classical electron
field equation to obtain the electron wave functions.

However, we should keep in mind that the solution (2.4) is not a proper soliton
solution to the GSW lagrangian, as such according to the above discussion does
not exist.

Finally, it should be noted that in the present paper we use an approximation
where the back reaction of τ–leptons on Higgs boson is neglected. If not neglected,
the Higgs and the τ–lepton equations should be solved simultaneously. In order
to obtain an exact classical solution, we assume that for lower energies the Higgs
particles (with an assumed mass of MH > 100 GeV) are relatively little affected
by the τ–leptons (with mass of Mτ = 1.87 GeV). The rigorous treatment of the
validity of such an approximation is not discussed in the present paper.

The energy density of such a static Higgs solution is strongly concentrated
around the spatial origin due to a rather large mass of the Higgs–particle setting
the space scale in (2.4).

Substituting (2.4) into the τ–lepton part of the lagrangian (2.2) we obtain the
lepton–field equation in the form
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γ3
∂τ

∂z
− iγ4

∂τ

∂t
+ [Mτ + V (z)]τ = 0, (2.5)

where

V (z) =
1

2
V0

(

1 + tanh
z

z0

)

, V0 = 2Mτ , z0 =
2

MH

. (2.6)

This is now Dirac equation with a smooth static potential (2.6) which will be
solved exactly for the τ–lepton wave functions. The potential (2.6) has been studied
in Ref. 11.

Similar studies on fermion–kink interactions, without reference to GSW model,
have been reported in Ref. 8 and in some references therein. The static τ -lepton
wave function has the form

τ(z, t) = u(z) exp(−iEt) (2.7)

where E is the energy of the τ–leptons and

u(z) = [u1(z)u2(z)u3(z)u4(z)]
T

(2.8)

is the static four–component spinor. Substituting Eq. (2.7) into Eq. (2.5), we obtain
the equation

γ3
du

dz
+ [Mτ + V (z)]u = γ4Eu. (2.9)

In the present paper we use the standard representations for the matrices γ3,
γ4, α3 and σ3.

We assume that the τ–lepton has the positive helicity such that the condition
σ3u = +u is satisfied. From the particular representation of γ–matrices we see that
it implies u2(z) = u4(z) = 0. Therefore, the system of four equations (2.9) reduces
to a system of two equations for u1(z) and u3(z), i.e.

−i
du3

dz
+ [Mτ + V (z)]u1 = Eu1, (2.10a)

−i
du1

dz
− [Mτ + V (z)]u3 = Eu3. (2.10b)

Introducing the fields φ1 and φ2 instead of u1 and u3, in such a way that

φ1(z) = u1(z) + iu3(z), φ2(z) = u1(z)− iu3(z), (2.11)
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we obtain the following uncoupled second–order differential equations for the fields
φ1 and φ2

d2φ1

dz2
+

{

E2 − [Mτ + V (z)]
2 − dV

dz

}

φ1 = 0, (2.12a)

d2φ2

dz2
+

{

E2 − [Mτ + V (z)]
2
+

dV

dz

}

φ2 = 0. (2.12b)

The charge density of the τ–leptons with the positive helicity is

ρ = −iτγ4τ = τ+τ = u+u = |u1|2 + |u3|2 =
1

2
(|φ1|2 + |φ2|2), (2.13)

while the current density is

s = τγ3τ = τ+α3τ = u+α3u = u1u
∗

3 + u3u
∗

1 =
i

2
(φ∗

1φ2 − φ1φ
∗

2). (2.14)

3. The exact solutions of the lepton–field equations

The equations (2.12) can be reduced to the hypergeometric equations and solved
exactly. The exact solutions are given by

φ1 = xp(1− x)qF (p+ q + r, p+ q − r + 1, 2p+ 1;x) (3.1a)

φ2 = xp(1− x)q
(p+ q + r)(p− q + r)

r2
F (p+ q + r + 1, p+ q − r, 2p+ 1;x) (3.1b)

where

x =
1

1 + exp(2z/z0)
(3.2)

and

p2 =
−E2 + 9M2

τ

M2
H

, q2 =
−E2 +M2

τ

M2
H

, r = 2
Mτ

MH

. (3.3)

In the asymptotic region z → +∞(x → 0), we obtain from Eq. (3.1)
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φ1(+∞) → exp(ik
′

z), (3.4a)

φ2(+∞) → (p+ q + r)(p− q + r)

r2
exp(ik

′

z), (3.4b)

where

k
′

=
√

E2 − 9M2
τ . (3.5)

In the asymptotic region z → −∞(x → 1), we obtain from Eq. (3.1)

φ1(−∞) → Γ(2p+ 1)Γ(−2q)

Γ(p− q − r + 1)Γ(p− q + r)
exp(−ikz)+

+
Γ(2p+ 1)Γ(2q)

Γ(p+ q − r + 1)Γ(p+ q + r)
exp(ikz), (3.6a)

φ2(−∞) → (p+ q + r)(p− q + r)

r2
Γ(2p+ 1)Γ(−2q)

Γ(p− q − r + 1)Γ(p− q + r)
exp(−ikz)+

+
(p+ q + r)(p− q + r)

r2
Γ(2p+ 1)Γ(2q)

Γ(p+ q − r + 1)Γ(p+ q + r)
exp(ikz), (3.6b)

where

k =
√

E2 −M2
τ . (3.7)

4. The transmission coefficient

From Eqs. (3.5) and (3.7) we see that when E > 3Mτ , which is the most
interesting case from the point of view of the high–energy physics, both p and q are
purely imaginary. Substituting Eq. (3.4) into Eq. (2.14), we obtain the transmitted
τ–lepton current as follows

s(+∞) =
2λ

r
, λ = ip. (4.1)

Substituting the second terms of Eqs. (3.6a) and (3.6b), which describe the incident
τ -lepton waves (we denote them by φ+

1 and φ+

2 , respectively), into Eq. (2.14), we
obtain the incident τ–lepton current as follows
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s+(−∞) =
2κ

r
|φ+

1 |2, κ = iq. (4.2)

The square of the absolute value of the second term of Eq. (3.6a) is easily calculated
keeping in mind that both p and q are purely imaginary. We obtain

s+(−∞) =
2κ

r

∣

∣

∣

∣

Γ(2p+ 1)Γ(2q)

Γ(−p− q − r + 1)Γ(p+ q + r)

∣

∣

∣

∣

2

. (4.3)

The transmission coefficient is equal to

T =
s(+∞)

s+(−∞)
=

λ

κ

∣

∣

∣

∣

Γ(−p− q − r + 1)Γ(p+ q + r)

Γ(2p+ 1)Γ(2q)

∣

∣

∣

∣

2

. (4.4)

Using now Eqs. (4.1) and (4.2) and the formulae

Γ(χ+ 1) = χΓ(χ), Γ(χ)Γ(1− χ) =
π

sin(πx)
, |Γ(1− iχ)|2 =

πχ

sinh(πχ)
, (4.5)

after some algebra we obtain a fairly simple final result for the transmission coeffi-
cient

T =
sinh(2πλ) sinh(2πκ)

sinh2[π(λ+ κ)] + sin2(πr)
(4.6)

where, in accordance with Eqs. (3.3), (4.1) and (4.2), we have

λ2 =
E2 − 9M2

τ

M2
H

, κ2 =
E2 −M2

τ

M2
H

, r = 2
Mτ

MH

. (4.7)

In the limit E ≫ 3Mτ , it is easily seen that the transmission coefficient is
equal to unity as expected. The numerical result for the transmission coefficient as
a function of the incident τ–lepton energy in units of the τ–lepton mass, for the
value of the Higgs mass of MH = 100 GeV, is shown in Fig. 1. Furthermore, it
should be noted that for larger Higgs masses (MH → ∞ and z0 → 0) the potential
(2.6) approaches the step function at the spatial origin and the transmitted fraction
of τ–leptons, and indeed the transmission coefficient, decreases.
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Fig. 1. The transmission coefficient T as a function of the incident τ–lepton energy

E in units of the τ–lepton mass Mτ , with the assumed Higgs–particle mass of

MH = 100 GeV.

5. Conclusions

We indicated the possibility of finding the exact solutions for the non–linear
Higgs–particle lagrangian in the (1+1)–dimensional case and to use such solutions
as potential barriers for the exact classical studies of interactions between the Higgs
and lepton sectors of the GSW model of electroweak interactions. The interesting
question for further studies is whether the self–interaction terms of the Higgs sector
lagrangian can be modified to allow such solutions in the physically more interesting
(3+1)–dimensional case. In view of the Derrick theorem, such self–interaction terms
may have to include higher order derivative terms of some kind of stabilization
methods which are at the same time consistent with the GSW–model and provide
correct masses of the gauge and lepton fields.
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TUNELIRANJE τ –LEPTONA KROZ STATIČKI JEDNODIMENZIJSKI
HIGGSOV POTENCIJAL

NILS DALARSSON

Institute of Theoretical Physics, Uppsalla University, Uppsala, Švedska

UDK 539.12

PACS 13.10.+q

Primjenom GSW lagranžijana elektroslabog medudjelovanja u (1+1)–dimenziji
proučava se tuneliranje τ–leptona kroz statički jednodimenzijski Higgsov potenci-
jal. Dobiveno je egzaktno rješenje za Diracovu valnu funkciju τ–mezona i egzaktan
izraz za koeficijent transmisije τ–leptona.
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