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The surfaces of bicontinuous disordered microemulsion structures or L3 phases can
be described as level cuts of random Gaussian fields with a given spectrum. We
consider here the difference between the entropy of these states and the known
entropy of the generating random field. In another context, this difference is equal
to the decrease in the Shannon information content resulting from the process of
sampling and digitising of continuous stochastic signals.

1. Level-cut random fields and microemulsion structure

The most accurate analytical model of microemulsion structures is obtained by
defining the surface dividing oil from water as a level cut of a 3-dimensional random
Gaussian field [1 – 3]. For a symmetric microemulsion, the surface is defined as the
locus of all points in space where the field has a value of zero (Fig. 1a). Non-
symmetric phases can be described by changing the level of the cut to other values

1In this tribute I would like to recall the love for all aspects of physics which as beginning
students we learned from Professor Paić. As I write this I am thinking of the time 35 years ago
when Professor Paić lead the Zagreb University class of 1960 through the excitement of entering
the world of scientific enquiry with its limitless possibilities.
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(Fig. 1b). For the L3 phase, the surface defines a membrane separating “inside”
and “outside” aqueous compartments.

Fig. 1. Planar cross–sections of a levelled Gaussian field. The states can correspond
to oil/water distribution in a symmetrical microemulsion (a); non-symmetrical mi-
croemulsion (b); or many levels of digitised signals (c).

As the generating random Gaussian field is completely described by its spectral
density, average properties of the level-cut surfaces also depend only on the spectral
density. The average elastic energy of surfaces was evaluated exactly using the prop-
erties of the Gaussian statistics of the generating field [2]. The entropy of surfaces
is more difficult to evaluate. It was approximated by the entropy of the generating
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field, based on the argument that it is possible to reconstruct the 3-dimensional
field from the level cut, and therefore the surface and the field contains the same
information [3]. The free energy of the system was thus approximately determined
and the spectrum of the field could be obtained by variational minimisation of the
free energy. This completed approximate derivation of the constitutive equations
of the model. For applications of the model, see Ref. 4.

The reconstruction of 3-dimensional fields from the surfaces is accurate if sur-
faces are defined with great precision. In numerical experiments [2], we had no
difficulty reconstructing a 3-dimensional field from level-cut data using a variant
of the method used to reconstruct 2-dimensional images from zero crossings [5].
But in real physical systems, surfaces are only defined with finite accuracy, and
the argument relating the entropy of the generating field to the entropy of surfaces
must be re-examined.

2. Link to signal representation

While this problem may appear to belong to a rather exotic area of chemical
physics, it is in fact equivalent to a very general problem in signal processing. Con-
tinuous signals are routinely sampled and digitised. Digitising process corresponds
to a cut of a continuous field at one or more levels (Fig. 1c). The accuracy of a
digitised record can be a single bit – just black and white2, a 16-bit word commonly
used in recording of music, or any other desired accuracy. How much information
is lost in the process?

Of course, the answer depends on the correlation structure of the original con-
tinuous signal. But for one important class of signals – the Gaussian process with
a known spectrum – we expect that this general question can be answered by eval-
uating the entropy of the level cut Gaussian fields using the methods developed
over the years in statistical physics of solids and liquids. The evaluation will pro-
vide some insight into the relationship between the correlation functions and the
information content of continuous signals.

In presenting the above argument, we use the exact equivalence between the
most common measure of information - the Shannon information [7] – and the
thermodynamic entropy of the system. Other measures of information, like the
algorithmic information of Kolmogorov and Chaitin may be more appropriate for
very structured signals.

3. Link to the Ising model

After a level cut, the Gaussian random field becomes a spatially distributed
field which can only assume two values. It is a natural expectation that such fields

2To increase the amount of information in the black/white image, various dithering algorithms
are available (see eg. Ref. 6).
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can be described by a corresponding Ising model. In a more general version, field
values can assume a discrete number of states and the resulting statistics is related
to the Potts model.

The expectation is borne out in the lowest order approximation, where simple
results are obtained. Further investigation is needed for higher order terms and the
re-summation of some classes of diagrams.

In the following, we use a discrete lattice in space, where the lattice constant
corresponds to the precision with which a surface can be defined in chemical physics
applications, and in signal processing applications to the sampling rate. It is as-
sumed that the sampling rate is sufficiently high to represent the highest frequencies
in the signal.

The Gaussian random field xi is completely specified by its covariance matrix
R = (rij). We select a single level cut at a value α and obtain surfaces as illus-
trated in Figs. 1a and b. The space is divided into regions of, e.g. oil and water.
Probabilities of oil or water at each of n lattice sites are obtained by integrating
over all field values x ≥ α or x < α, respectively. The probability of a particular
state on the lattice is
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X = x1 . . . xn is a vector describing a configuration of the generating Gaussian field.
After levelling, the configuration can be described with a set of discrete variables
µi = ±1. Using the transformation xi → µixi and a summation over the variables
µi, we obtain the configurational partition function
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where Xµ stands for the vector whose elements are µixi. Integration limits in
this equation can be considered as arising from Heaviside step functions inside the
integrals. Expressing these functions in the integral representation gives
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The integration contour C is along the real axis, except near the origin where it
crosses the imaginary axis in the lower half-plane. Using a well-known integration
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formula (see, e.g., Ref. 8), Eq. (3) gives
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Integrals over z variables can be performed if the exponential function in the
integrand is expanded in powers of the correlation matrix elements rij and the level
α. In the lowest order we obtain
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Comparing this results to the Ising model, we see that in the lowest order the
ensemble of surfaces obtained by a level cut of Gaussian random field is equivalent
to that of the Ising model with the interaction βV (rij) = −2rij/π. The range of
the interaction is thus determined by the range of the covariance function of the
generating Gaussian field rij . The first order approximation is accurate if rij is
small for all i and j.

Symmetrical states obtained by the level cut at α = 0 correspond to the case
of no external magnetic field. For deviation from symmetry, the model corresponds
to the Ising model in the external magnetic field given by βH = α

√

2/π.

We are now in a position to understand how the accuracy in specifying the
position of level cuts affects the calculation of the system entropy. The behaviour of
the system depends on the ratio of the two length scales: of the range of correlations
of the Gaussian field (i.e. the range of the “potential” V (rij)) to the lattice constant.
When rij is small for nearest neighbours i and j, the system behaves like an Ising
model with short-range interaction. The entropy is much smaller than that of the
generating field.

On the other hand, if the range of the covariance function of the generating
field is large compared to the lattice constant (i.e., the accuracy in the definition
of the surface, or the sampling rate of continuous signals), we have the Ising model
with long–range interaction. From the work of Baker [8], we know that such Ising
models approach the Gaussian mean field behaviour with the deviations being of
the order 1/R, where R is the number of spins in the range of the interaction. The
entropy of the levelled Gaussian field is then similar to that of the generating field.
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The model also indicates that non-symmetrical microemulsion or L3 phase states
have a lower entropy than the symmetrical states. In describing such states, one
must not use the usual simple expression for the entropy of a random Gaussian
field [9], but rather use more complicated expressions corresponding the decreased
entropy obtained when an Ising system is placed into an external magnetic field.

The previous observation relates to some well-known empirical findings in the
field of signal representation. When images are reconstructed from data obtained
by a single level cut, much better results are obtained if the level cut is selected so
that the resulting black/white image is approximately symmetrical [5]. Although
the number of equations used to reconstruct an image in non–symmetrical cases
can be arbitrarily large and exact reconstruction should be possible, the process
produces poor results. This is due the finite precision of the data (corresponding to
the Ising model lattice parameter) and a lower information content, corresponding
to the entropy of the Ising model in a magnetic field.

At present, the argument is approximate: First order results become progres-
sively worse as the interaction range or the asymmetry increase (the errors become
large as rij → 1), and more accurate calculation appears difficult because in the
higher–order terms, many lattice sites become coupled.

4. Link to liquid state physics

The problem of calculating the entropy of disordered surfaces, or that of sam-
pled and digitised signals, may be approached using the formalism developed in cal-
culations of the entropy of liquids with long–range interaction between molecules.
Microemulsions and L3 phases may be considered as two-component fluids, consist-
ing of “oil” and “water” or “inside” and “outside” sites. When signal is digitised
into n levels, we have a correspondence to an n-component fluid. The analogy is
exact for L3 phases (where there is water on both “inside” and “outside”) or for
symmetrical signals. In the case of microemulsions, we assume that the short–range
part of the entropy, corresponding to the precise molecular arrangement over several
diameters, is not affected by the oil/water partitioning.

The entropy of a multicomponent fluid may be expressed as a functional of its
correlation functions. It can, therefore, be calculated for a variety of stochastic
ensembles of functions, as long as the correlation functions are accessible. The
method is not restricted to Gaussian statistics, and can be applied to a variety of
signal statistics. It will be easier to find good approximations when the correlation
range is short and when the first nonvanishing cumulants are small.

In the case of levelled Gaussian field, correlation functions can be evaluated in
terms of the covariance function of the generating field. Particularly simple results
are obtained for the symmetrical case. The pair correlation functions are evaluated
by integration over the bivariate Gaussian distribution [10] as, e.g. g++(ij) =
1 + 2

π
arcsin rij . Third order correlation functions, which will be needed in entropy
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calculation are just a simple generalisation. One finds, e.g.

g+++(ijk) = 1 +
2

π
(arcsin rij + arcsin rik + arcsin rjk). (6)

Fourth–order correlation functions are no longer simple. More general correlation
functions for unsymmetrical cases have been studied by Roberts and Teubner [11].

The effective interaction is long-ranged, and we must use appropriate expres-
sions for the entropy. A resummation of ring diagrams, as used in the hypernetted
chain approximation, has been performed by Hernando [12]. In a recent study,
Laird, Wang and Haymet [13] generalised that result to mixture fluids and demon-
strated its accuracy in the case of Coulomb interaction. Although the resulting
expression is rather complicated, the only inputs into the calculation are second
and third order correlation functions of the mixed fluid.

The accuracy of the standard liquid state approximations for the entropy of an
ensemble of surfaces, obtained by level cutting, remains to be evaluated. The ran-
dom Gaussian field before the levelling operation, where exact entropy is known,
corresponds to a fluid with an infinite number of components. Application of ap-
proximate expression to this case should provide information on the accuracy of
various approximation that use only low–order correlation functions for evaluation
of the entropy.

5. Discussion

A wide variety of structures, typical of phase-separated materials or surfaces,
can be described with the morphologies obtained from the levelling operation on
random Gaussian fields. The variability comes from the choice of the spectral den-
sity of the generating field, where suitable periodicity as well as the characteristic
range of the interaction can be accommodated. Understanding of the phase and
dilution behaviour of equilibrium phases described by such structures requires the
knowledge of the corresponding entropy.

We considered here two different approaches to the problem of evaluating the
entropy, or the information content of the states, obtained by levelling of the random
generating field. The analogy with the Ising model indicates that the information
loss is reciprocally proportional to the number of lattice sites within the range of
the correlations in the generating field.

In the case of microemulsions or L3 phases, this means that the entropy of the
generating field provides a good approximation to the entropy of surfaces, as long
as the correlation length of the field is large in comparison with the accuracy in
the definition of the surfaces. Entropy of more dilute structures will be better ap-
proximated by the entropy of the generating field. Of course, the random Gaussian
field topology is only appropriate within a certain well-defined range of values of
membrane elastic constants, as shown in a recent simulation [14].
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The question of the information content of a function obtained by zero-crossing,
or more generally level crossing, arises in many areas of signal processing. Proposed
developments should provide an accurate measure of information loss in commonly
used representations of continuous signals. Similar considerations arise in the field
of vision research. The present work indicates how the information content of sam-
pled and digitised signals depends on the correlation range of the original signal.
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MIKROEMULZIJE, L3 FAZE I GUBITAK INFORMACIJA U SIGNALNOJ
REPREZENTACIJI

Plohe dvojno–neprekidnih neuredenih mikroemulzijskih struktura ili L3 faza mogu
se opisati kao razinski rezovi Gaussovog polja izvjesnog spektra. Razmatramo raz-
liku izmedu entropije tih stanja i dobro poznate entropije generirajućeg nasumnog
polja. U drugom smislu, ta je razlika jednaka smanjenju Shannonovog sadržaja
informacija koji slijedi iz procesa odabira i digitalizacije neprekidnih stohastičkih
signala.
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