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We show how an adiabatic approximation to the usual coupled–channels formalism
gives a simple way of calculation and understanding the heavy–ion fusion inelastic
cross–section. We did the calculation for the 58Ni + 58Ni system by considering
only one transition, the ground–state to ground–state transition. A very simple
method to calculate the above–barrier inelastic cross–section has been proposed,
which can be handled entirely within the framework of the direct–reaction theory.
The essence of the method is the role of the JWKB treatment in the determination
of the partial waves which contribute to the fusion. We apply the schematical model
to the calculation of inelastic cross–section for the system 58Ni + 58Ni. Results of
the model are extensively discussed.

1. Introduction

Fusion of two heavy ions has been investigated for many years [1,2]. A lot
of experimental data are available and many features concerning this process are
now understood. However, there still remain open questions which deserve further
studies. In particular, there exist some models which can reproduce well fusion data
for restricted cases, but a global understanding of the fusion is still not known.
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Investigations of deep inelastic reactions have shown that dissipation of collec-
tive energy into intrinsic excitation plays an important role in the fusion process
[3]. The most direct approach to the fusion problem is to make a full quantal
coupled–channels calculation. Broglia et al. [4] and Dasso et al. [5] use a very sim-
plified coupled–channels model, using one–dimensional potentials, in which the
intrinsic states are degenerate and the coupling can be removed by a unitary
transformation. Lindsay and Rowley [6] also use this kind of model, but discuss
angular–momentum–coupling effects explicitely. Jacobs and Smilansky [7] use a
path-integral method based on influence functionals, where the essential approxi-
mation is that the tunnelling is not treated in a self–consistent way. The influence
functional method gives a better approximation but is also more complicated. The
path-integral method is equivalent to a version of the WKB method given by Brink,
Nemes and Vautherin [8] for the coupling of a collective variable r to the intrinsic
degrees of freedom ξ. In a previous paper, Bougouffa et al. [9] have shown that
the coupled–channels model used by Dasso et al. [5] may be extended to three
dimensions and to enlarge the investigation to states with angular momentum l /=0
in the adiabatic approximation. Also, we must ignore the difference in centrifu-
gal potentials and use the one corresponding to lα = 1 in all channels, i.e. the
entrance–channel relative angular momentum, where the system of coupled dif-
ferential equations can be decoupled by using a theorem of coupled differential
equations (Cao [10]). The qualitative features of the results are very similar.

In this paper, we use the kind of model where the barrier occurs at a large
radius which is required for the scattering of two heavy ions in which the coupling
can be removed by using a theorem of coupled differential equations. With this
suggestion, we show the role of the JWKB treatment in the use of the sharp cut–
off approximation in the coupling–channels formalism with schematical model for
heavy ion problems. We also show that this role consists in determining the number
of the partial waves which contribute significantly to the above–barrier inelastic
cross–section.

The effects of coupling of a 0+ ground state to a low–lying 2+ excited state may
be studied by using the JWKB approximation to the separated system with central
potentials differing by an amount related to the coupling strength. The important
feature of our method is that the full angular–momentum algebra is included rig-
orously, allowing all T matrix elements of physical interest to be generated from
the two T matrices obtained from schematic model. In particular, the inelastic
cross–section may be obtained in a manner which is numerically simpler than the
distorted–wave approximation, which is also more accurate for strongly deformed
systems.

2. Exact two–channel model

In order to make clear the method which must be employed in dealing with
inelastic collisions, we will first consider the scattering of two spin–zero nuclei, one
of which has a 0+ excited state at an excitation energy Q with a coupled potential
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Vαβ to ground state. The two coupled equations for the radial wave function Ψ(r)
for the partial waves l0 and l1 are then [14]:

[

d2

dr2
+

2µ

h̄2
(E0 − V00)−

l0(l0 + 1)

r2

]

Ψ0 =
2µ

h̄2
V01Ψ1,

[

d2

dr2
+

2µ

h̄2
(E1 − V11)−

l1(l1 + 1)

r2

]

Ψ1 =
2µ

h̄2
V10Ψ0, (1)

where Ψ0 = Ψl0
el
(r), Ψ1 = Ψl1

inel
(r), µ is the reduced mass, and E1 = E0 −Q. Q can

be varied. Assume that couplings to the ground state are similar for each channel,
i.e. V01 = V10.

For the scattering of two heavy ions, the reduced mass is large and the barrier
occurs at a large radius where the difference in centrifugal barriers is small for
the various channels, if the total angular momentum l is not too large. For nuclei
where Q is small, we can then define an extended adiabatic approximation with
the following assumptions: we ignore the excitation energy Q, but in addition we
must ignore the difference in centrifugal potentials in Eqs. (1) and use the one
corresponding to l0 = l1 = l in all channels, i.e. to the entrance–channel relative
angular momentum.

Under these conditions, we can decouple Eqs. (1) using the theorem on the
separation of a system of coupled differential equations [10], and the system may
always be completely separated if and only if the quantity γ = V01/(V00 − V11) is
independent of r.

The separated equations of the system (1) are now

[

d2

dr2
+

2µ

h̄2
(E − V ∓

l (r))

]

φ± = 0, (2)

where
2µ

h̄2
V ±
l (r) =

l(l + 1)

r2
+

2µ

h̄2
V ±(r),

V ±(r) =
1

2
[V00(r) + V11(r)]±

1

2

√

[V00(r)− V11(r)]2 + 4V 2
01(r).

The functions Ψ0 and Ψ1 in (1) may then be recovered by the inverse transformation

Ψ = X−1φ, (3)

where the matrix X is defined in Ref. 9.

However, the boundary conditions also need to be considered, since Ψ0, the
elastic wave function, consists of an incoming wave as well as an outgoing wave,
whereas Ψ1 has only an outgoing part.
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Both uncoupled Eqs. (2) correspond to simple elastic scattering problems, and
by using the JWKB approximation of the uncoupled integral equation, we obtain
the corresponding proper phase shift η±l of the system (2)

η±l = (2l + 1)
π

4
− kr±0 +

∞
∫

r
±

0

[

√

F±
1 − k

]

dr, (4)

where

F±
1 = k2 −

(

l + 1

2

)2

r2
−

2µ

h̄2
V ±(r)

and

k2 =
2µ

h̄2
E.

By using the inverse transformation (3) and with the S–matrix defined by

S = exp(−2iη±l ), (5)

we obtain directly the inelastic total cross-section

σine =

∞
∑

l=0

σine
l , (6)

where

σine = πλ̄2(2l + 1)χ2
l sin

2(η+l − η−l ), (7)

χl =
1− a2

1 + a2
, (8)

a = 2γ +
√

1 + 4γ2 (9)

and λ̄= 1/k is the asymptotic wavelength.

3. Applications

For energies safely above the barrier, many models use the sharp cut–off ap-
proximation [11], which defines the cut–off angular momenta for fusion lcut(E) as

σCF = πλ̄2(lcut + 1)2. (10)
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Values for lcut obtained from the experimental cross–sections σCF using Eq. (10) are
presented by Beckerman et al. [12]. The concept of an lcut is not particularly useful
at center–of–mass energies near and below that of the fusion barrier. For massive
target–projectile combinations, the centrifugal barrier rises slowly with increasing
angular momenta at low angular momenta and the corresponding transmission
coefficients decrease slowly. Therefore, lcut values have been given by Beckerman
[12] for data at above–barrier energies only, and Eq. (10) is not very easy to use
because it depends on lcut which is not known explicitly.

In order to further support our conclusions presented in Ref. 9, we improved
our model calculations. Our model is designed to meet two requirements:

(a) It should be simple enough to allow for a quantum-mechanical exact solution.
This should guarantee that the results are free from such approximation as JWKB,
Hill–Wheeler, averaging over probabilities, etc...

(b) The model should at least schematically reproduce some new features which
are not predicted in our previous approach [9].

In the applications which follow, we use Gaussian forms for Vαα and Vαβ :

Vαα = Vα exp

[

−
(r − rb)

2

2σ2

]

, α = 0, 1, (11)

Vαβ = F exp

[

−
(r − rb)

2

2σ2

]

, α /=β, (12)

with the same position and twice the center curvature of the s–wave barrier [13].
This assumption is good if the coupling potential does not alter the barrier shape
to much. The coupling strength is determined by F . The choice of the form–factor
reflects our picture of a neck degree of freedom which should be excited only for
rather close nuclear contact.

In our applications, F does not carry angular momentum. This is assumed for
the sake of simplicity and in order to minimize the assumptions about the coupling
potential. It should not imply that the neck or any other relevant degree of freedom
does not actually couple different partial waves. Note, however, that the multipole
vibrations of separated nuclei are not the normal modes of the system in contact.
One might, therefore, expect that the degrees of freedom relevant for fusion do not
carry a specific angular momentum [13].

In the following, we shall use units of amu, MeV and fm for mass, energy and
distance, respectively. The calculation procedure is to evaluate first the roots r±0
of F±

1 by using the fixed–point iteration procedure, then to calculate the proper
phase shifts, which are defined in Eq. (4) by using the Simpson integration method,
and finally to obtain the inelastic cross–section from Eqs. (6) and (7).

As the firs step, we plot in Fig. 1 the interaction potential V ±
l (r) defined in

Eq. (2) for a head–on collision between two heavy ions, as a function of distance,
r, separating their respective centres of mass, with the purpose to observe still
more closely the influence of two–channel coupling. On the left, V 0

l (r) stands for a
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single fusion barrier in the entrance channel, whereas the split barrier of the right
are shifted by an amount ±(1/2)

√

(V0 − V1)2 + 4F 2 where F is the two channel
coupling strength. This is done for the 58Ni + 58Ni system where the parameters
are simulated to the s–wave potential that is located at r = rb.

Fig. 1. Effective partial–wave interaction–potential near the barrier for 58Ni + 58Ni
in our schematical model. Vl(r) stands for single fusion barrier in the entrance
channel, whereas the split barrier are shifted by an amount ±F , the later being the
two–channel coupling strength. The parameters are µ = 29.0, rb = 10.8, σ = 3.0,
F = 2, V0 = V1 = 95.6, Q = 0.

On the other hand, it is important to note, that the cross–sections formulas (6)
and (7), derived as described above, require that η±l , defined in Eq. (4), must be

a real number, i.e. that the functions F±
1 , which appear in the integrand of the

integral in Eq. (4), must be positive for r > r±0 . In this way the cut–off angular
momentum lcut is defined. For the largest l value which still allows fusion to occur,
namely lcut, we have the following condition:

k2 = V ±
lcut

(rb), (13)

where V ±
lcut

(rb) is the height of the fusion barrier for a head–on collision and rb its

location corresponding to l = lcut. Equation (12) can be rewritten as:

(

lcut +
1

2

)2

r2
+

1

2

2µ

h̄2

[

V0 + V1 ±

√

(V0 − V1)2 + 4F 2

]

= k2, (14)
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which gives the cut–off angular momentum lcut.

Fig. 2. Partial inelastic cross–section for 58Ni + 58Ni at three different values of
energy. The parameters are µ = 29.0, rb = 10.8, σ = 3.0, F = 2, V0 = V1 = 95.6,
Q = 0, E = 100, 104, 108.

The situation described in our way is quite different from that used in Eq. (9)
[6], and it is interesting to see that the JWKB treatment is available only above
barrier fusion of heavy ions. However, extension to a sub–barrier fusion case is
possible at the cost of more complications.

In Fig. 2., we illustrate what has been said above. We plot the partial inelastic
cross–sections, which are defined in Eq. (6), as a function of l. The calculation was
done for the 58Ni + 58Ni system at three different values of the center–of–mass
energy. We see that they have similar features, and the maximum of the partial
inelastic cross–section occurs for l values just near the cut–off angular momentum
lcut. When the center–of–mass energy increases, the maximum is shifted to larger
values of l. In Table 1 we give the predictions for the total inelastic cross–section in
the coupled–channel formalism with our schematical model, at energies well above
the barrier, where the number lcut of partial waves, which contribute significantly
to the above barrier inelastic cross–section, has been estimated from Eq. (14).

The dependence on the coupling can be illustrated by considering the total
inelastic cross–section as a function of coupling strength F at three different values
of energy, E = 100, 104, 108 MeV. Figure 3 shows the results of calculations made
assuming a perfectly matched excited channel (V0 = V1, Q = 0). However, the
same oscillatory behaviour is more pronounced at higher energy.
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TABLE 1.
Partial wave contribution to the total inelastic cross–section in the

coupling–channel formalism with our schematic model, at energies well above the
barrier. The parameters are µ = 29.0, rb = 10.8, σ = 3.0, F = 2, V0 = V1 = 95.6,

Q = 0, E = 100, 104, 108.

E (MeV) σine (mb) lcut (h)

100 82.8 19

104 151.1 31

108 165.2 40

Fig. 3. Effect of magnitude of the coupling strenght F on the total inelastic cross–
section in the adiabatic approximation. The parameters are simulated to the s–wave
potential for 58Ni + 58Ni: µ = 29.0, rb = 10.8, σ = 3.0, F = 2, V0 = V1 = 95.6,
Q = 0, E = 100, 104, 108.

To complete this subsection, we show some results where the entrance channel
potential V0 and the strength of coupling are fixed, but the potential V1 in the
excited channel (near–resonance case) is allowed to change. In this case the function

γ =
V01(r)

V00(r)− V11(r)
(15)

is independent of r and the quantity a in Eq. (9) is also independent of r. Therefore,
Eqs. (1) may be separated. The total inelastic cross–sections are shown in Fig. 4
at energies above the barrier where the use of the JWKB treatment is allowed. It
is assumed that only the partial waves up to an orbital angular momentum lcut
whose potential barrier height equals E, contribute to fusion. This result is similar
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to that obtained by Dasso et al. [5], T. Udagawa et al. [15] and Beckerman et al.
[12] for the same system.

Fig. 4. Effect on the total inelastic cross–section of varying the barrier height in
the excited channel in the two–channel model for 58Ni + 58Ni. The parameters are
µ = 29.0, rb = 10.8, σ = 3.0, F = 2, V0 = 95.6, V1 = 93.6, 95.6, 97.6, Q = 0,
E = 100, 104, 108.

4. Summary and conclusion

In this paper, we have derived a simple method of calculating the above–barrier
inelastic cross–section for the scattering of two heavy ions, and we have shown how
the coupled–channels equations for this scattering problem can be easily decoupled
by using the theorem of separation of coupled differential equations in our adiabatic
approximation (near resonance case V0 /=V1) which is valid for many nuclei. We
expect that our calculation is fairly realistic.

We have described the fusion of two heavy ions in terms of the simple model
that uses the Gaussian forms of potentials. We have investigated the role of the
JWKB treatment in this schematical model, in which the fusion is assumed to take
place if and only if the two ions go over the potential barrier. With this mind,
we have previously investigated the case when two channels are coupled with the
same angular momentum and noted the effects of varying the interaction strength.
In particular, the important role of the coupling in enhancing the above barrier
inelastic cross–section for the system 58Ni + 58Ni has been pointed out.

The results obtained in this work show the important role of the JWKB treat-
ment which assumes that only partial waves up to an orbital angular momentum
lcut, whose potential barrier height equals E, contribute to fusion.

Our results can be extended to phenomenological problems of scattering, to
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include the angular–momentum coupling effects at the cost of more complication.
This work is in progress. An analogous situation occurs in molecular chemistry when
one brings two hydrogen atoms together in order to form a hydrogen molecule [14].
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ULOGA JWKB POSTUPKA U APROKSIMACIJI NAGLOG
PREKIDA ZA SUDARE

Pokazuje se kako primjena adijabatske aproksimacije omogućuje proračun neela-
stičnog udarnog presjeka pri fuziji teških iona. Račun je proveden za sistem
58Ni + 58Ni i prijelaze iz osnovnih u osnovno stanje. Bit metode je JWKB pos-
tupak za odredivanje parcijalnih valova koji doprinose fuziji.
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