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Starting with a real abstract algebra which encapsulates the algebraic structures
of both classical and quantum mechanics, this paper presents a self–contained real-
ization of the latter in phase space. Having both mechanics formulated in the same
space opens two new windows into the comparative study of foundations. This
stems from the fact that the same physical problem, as defined by a given Hamil-
tonian, can be solved in several independent ways. The exact solutions can then be
compared. Thus, comparison of the classical and quantum solutions in phase space
offers new epistemological insights into Bohr’s correspondence principle, while com-
parison of the quantum solutions in the different formalisms of Hilbert space and
phase space yields new physical insights. These general ideas are then tested on
the harmonic oscillator. The analytic ground work is presented in Part I, the exact
solutions will be derived in Part II.

1. Introduction

A pre–geometric algebraic structure, referred to as “quantal algebra,” has been
introduced in 1976 by A. Petersen and one of us [1] to encapsulate the common
characteristics of classical and quantum mechanics and to exhibit as clearly as
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possible Bohr’s correspondence principle. A theory is “pre-geometric” if it neither
requires, nor makes reference to, the geometric structure of space.

Realizations of this quantal algebra include not only classical and quantum me-
chanics in their standard canonical and Heisenberg formulations, but also a new
realization in phase space, which is quantum mechanical in structure but very sim-
ilar to classical mechanics in formulation. We refer to this formulation as phase
space quantum mechanics. In this realization, observables and states are real C∞

functions over phase space, just as in classical mechanics, but their multiplicative
and Lie structures obey the identities that characterize quantum mechanics. The
fact that the states are functions over phase space (2n dimensions) rather than over
position space (n dimensions) makes this theory appear formally richer than Hilbert
space quantum mechanics. Only careful analysis will show if the apparent differ-
ence is physically interesting. The first impression might be that the Heisenberg
uncertainty relations are violated, but, as the solution of the harmonic oscillator
indicates, this is probably not the case. The reason is that the real phase space
functions which represent states are not everywhere non-negative, even though
their integral over the entire phase space equals one. Consequently, they are not
ordinary probability densities. Like Schwartz distributions (e.g., the Dirac delta
function), these states acquire observable meaning only after integration — but
they differ from distributions in at least three essential points: (a) while the dis-
tributions are not true functions (i.e., are not defined as point-to-point maps), our
states are everywhere of class C∞, or even analytic, as in the case of the harmonic
oscillator, (b) unlike distributions, they “act” non-locally in the sense that their
algebraic products involve derivatives to infinite order, and (c) unlike distributions,
they may not be integrated over domains of arbitrarily small measure. This last
point requires clarification: even though the computation of the expectation values
of observables is the same as in classical mechanics, the domains of integration
cannot be simultaneously arbitrarily small and located anywhere in phase space.
If the domain of integration is allowed to be arbitrarily small, positive definite ob-
servables can have negative expectation values and, as a corollary, probabilities are
not confined to the interval [0, 1].

In the present work, we study the time-independent harmonic oscillator. We
first solve the problem in the self-contained formalism of phase space quantum
mechanics, and then we compare the results with the standard quantum mechanical
solution. Although the thinking and formalism are very different from what we
are accustomed to in Hilbert space quantum mechanics, the observable results
— stationary energy levels and probability distributions in position space — are
exactly the same. Moreover, since the classical solutions are defined in the same
phase space, we can compare the quantum and classical solutions at levels of detail
not accessible in other formalisms.

Historically, the Lie structure of phase space quantum mechanics, which is a
transcendental generalization of the Poisson bracket, was known long before it was
algebraically derived in Ref. 1 — see Refs. 2 and 3. It has been referred to as the
“Moyal bracket”, or “sine bracket”. We call it the “Lie product”, or, suggesting
its anti-symmetry, the “α -product”. In addition to the Lie product, the quantal

142 FIZIKA B 5 (1996) 2, 141–158



grgin and sandri: the quantum oscillator . . .

algebra has an additional structure, which we call the “Jordan product”, or, sug-
gesting its symmetry, the “σ-product”. While it is true that the Lie and Jordan
products are not mutually independent (since exactly two pairs of such products
exist, as shown in Ref. 1, it is evident that, given one product, the other one is
uniquely determined), both must be explicitly defined for quantum mechanics in
phase space to be self-contained. Indeed, they play complementary roles. The σ-
product is the source of spectra (eigenvalues and eigenstates), while the α-product
is at the foundations of dynamics. The present work contains the complete inves-
tigation of the σ-product in the case of the simplest but very important bound
system, the stationary harmonic oscillator. We use the α-product only to impose
time–independence.

For phase space quantum mechanics to be equivalent to the standard Hilbert
space theory, both formalisms must yield the same probabilities whenever compar-
ison is possible. In Hilbert space, the states are complex functions, ψ(x), which,
according to Born, acquire the physical meaning of probability density in x by
way of the modulus squared, i.e., ρh(x) = ψ(x)ψ̄(x). In phase space, the states
are real (both positive and negative) functions, u(x, p), which, by analogy with
classical mechanics — but for the mentioned exception related to the size of the
integration domain — acquire the physical meaning of probability density in x by

integration, i.e., ρp(x) =
∞∫

−∞

u(x, p)dp. For the harmonic oscillator, we shall prove

that ρh(x) = ρp(x).

2. Overview of abstract mechanics

The theoretical basis for the present work is the purely algebraic Grgin-Petersen
article mentioned above. Our objective at the time was to take seriously Bohr’s be-
lief, as he had often expressed it orally to Petersen, that there should be more
to the correspondence principle than was then understood. It seems evident that
what limits the understanding of the relationship between classical and quantum
mechanics is the dissimilarity of the formalisms in which these theories are couched.
Indeed, the languages of phase space and of Hilbert space are worlds apart. Con-
sequently, the perceived differences between classical and quantum mechanics are
partly due to differences in the supporting formalism — differences which may
not be fundamental by themselves but mask the essential ones. To pursue Bohr’s
intuition, we sought a formulation of mechanics that would be common to both
theories, a formulation that would maximally exhibit the common structures of
these theories, while concentrating the differences in, ideally, a single place. These
heuristics led us to an abstract algebra of observables among whose realizations is
a unique phase space formulation of quantum mechanics. Justifying them as much
as possible intuitively, we shall now concisely review the concepts of this abstract
mechanics. Except for the proofs, which are given in Ref. 1, the following review is
complete, making this paper self–contained.

In addition to observables, we shall also need states and expectation values
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— concepts we had not investigated in Ref. 1. Borrowing the fact from standard
quantum mechanics, we here define the states as idempotent observables.

2.1. The algebraic structure of observables

2.1.1. The linear space of observables

We use the terms “dynamical variable” and “observable” interchangeably. In
classical mechanics, observables are represented by real C∞ functions over a phase
space; in quantum mechanics, by Hermitian operators in a Hilbert space. In both
cases they form a real linear space. Hence, to arrive at a structure common to both
mechanics, we first introduce a real linear space, H, whose points we call abstract
observables . We denote these observables by small Roman letters, f, g, h... ∈ H.

2.1.2. The Jordan product

In classical mechanics, the dynamical variables can be multiplied by each other
to produce new observables (products of C∞ functions are C∞ functions). Hence,
the classical observables form an associative and commutative algebra (usually re-
ferred to as the ring of continuous functions). In quantum mechanics, there are two
possibilities. To form new operators, one can use either the associative product, or
the symmetric product. The computational advantage of the former is associativ-
ity, but it does not preserve the space of observables. This is due to the fact that
the associative product of two arbitrary Hermitian operators is not Hermitian. By
contrast, the non associative symmetric product of two Hermitian operators, A,B,
defined as

{A,B} = 1

2
(AB +BA) , (1)

is Hermitian, and hence plays the same structural role as the product of functions
in classical mechanics. Which of the two operator products should be taken as the
basis for quantum mechanics is a matter of viewpoint concerning foundations. Let
us consider both possibilities in turn.

If it is taken as axiomatic that observables must be represented by opera-
tors, then the associative product is the natural one. This is the attitude that
has prevailed since the early days of quantum theory. The well–known algebraic
re–formulations of quantum mechanics, like the various star–algebras, assume as-
sociativity.

On the other hand, if it is the real structure of observables that is taken to be
fundamental, all relevant operations must preserve it. Since the associative product
is not structure-preserving in quantum theory, and since nothing fundamental would
favour associativity in an abstract algebra initially free of interpretation, it is the
symmetric product (1) that imposes itself in this abstract approach. It is interesting
to note that the algebraic viewpoint that preserves the reality of observables had
been favoured by Pascual Jordan in the early days of modern quantum theory [4,5],
so that the product (1) bears his name. This approach lost its appeal, however,
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when it was shown not to be more general than the Von Neuman formalism [6]. As
a consequence, it has not been developed far enough to reach the problem–solving
stage. To the best of our knowledge, the present work is the first that offers the
exact analytic solution of a physical problem in a real algebra based on the Jordan
product. This solution is obtained strictly within the real theory — not translated
into it from the known Hilbert space solution.

To represent abstractly the real products of both classical and quantum me-
chanics, we introduce into the linear space H a symmetric, but not necessarily
associative, product, which we denote by σ:

fσg = gσf (2)

This promotes the linear space H into an algebra. Since both classical and quantum
mechanics have a unit observable (the real constant 1 and the unit operator I,
respectively), we equip the algebra H with a unit, denoted by e ∈ H. Thus e σf = f
for all f ∈ H.

In classical mechanics, the product σ is associative; in quantum mechanics it
is not. The lack of associativity in an algebra is “measured” by the associator, a
linear mapping, [ , , ] : H⊗H⊗H −→ H, defined by the relation

[f, g, h] = (fσg)σh− fσ (gσh) . (3)

Just as the commutator is a key concept in standard quantum mechanics, the
associator is a key concept in our abstract mechanics. Obviously, [f, g, h] = 0 in
the classical theory.

2.1.3. The Lie product

Given an algebra, {H, σ} in our case, one also considers its Lie group of auto-
morphisms, i.e., the group of linear mappings, A, of the space H onto itself which
preserve the product:

A(fσg) = (Af)σ(Ag).

Infinitesimally, these transformations are generated by derivations:

D (fσg) = (Df)σg + fσ (Dg) ,

where A = I + εD. The totality of all derivation operators D is a Lie algebra.
The Lie product in this algebra is the commutator. In both classical and quantum
mechanics these derivations are of the “inner” type, which means that a derivation
operator is associated with every observable, and that there are no other derivation
operators.

In classical mechanics, a derivation operator is associated to an observable via
the Poisson bracket. If x and p are the position and momentum coordinates in
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a 2-dimensional phase space, and if g = g(x, p) is an arbitrary observable, the
derivation operator Dg is

Dg = {g, } = ∂g

∂p

∂

∂x
− ∂g

∂x

∂

∂p
. (4)

In quantum mechanics, a derivation operator is associated to an observable via the
commutator. Thus, if g is a Hermitian operator,

Dg = 1
i [g, ] .

When an observable, as g in these examples, is used to define a derivation,
it is referred to as a generator (it generates an infinitesimal transformation). It
is characteristic of mechanics, both classical and quantum, that observables and
generators coincide, a fact strongly emphasized by Dirac.

It follows from these remarks that the abstract algebra {H, σ} must also be
equipped with a Lie product — the abstract counterpart of the Poisson bracket
and of the commutator. We denote this product by α. In addition to the symmetry
relation (2), the following identities then hold in the two-product algebraic structure
{H, σ, α}:

Antisymmetry of α:

fαg + gαf = 0. (5)

Jacobi identity for α:

(fαg)αh+ (hαf)αg + (gαh)αf = 0. (6)

Derivation of α with respect to σ:

fα (gσh) = (fαg)σh+ gσ (fαh) . (7)

In order to complete this set of defining identities for {H, σ, α} , we need to
discover an additional one that would restrict the still arbitrary associator, Eq. (3).
To this end, we introduce a new product, β, which is to be the abstract counterpart
of the associative product of operators in Hilbert space. Hence, β is defined as

β = σ + ibα. (8)

This short-hand notation represents the identity fβg = fσg + ibfαg for some real
number b. Obviously, H is not closed under β, but its complexification H ⊕ i H is.
We require associativity to hold in the complex algebra, i.e.,

(fβg)βh = fβ (gβh) . (9)
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By substituting for β its definition (8) and working out the algebra using the Jacobi
and derivation identities, Eqs. (6) and (7), one obtains a new identity

[f, g, h] = agα (hαf) , (10)

where a = b2 is a non-negative real number. Even though this relation is derived
by complexification of the underlying linear space, we assume it to be defining for
the real quantal algebra {H, σ, α}. We note, however, that the present approach is
only a short-cut, heuristically sufficient for the present overview of quantal algebra.
A proof that remains within the field of real numbers and does not rely on the
associativity of operators in Hilbert space is given in Ref. 1.

This completes the review of the abstract algebraic structure of mechanics. The
distinction between the classical and quantum versions is localized at one place only,
in the association relation (10). The two theories are characterized, respectively, by
a = 0 and a > 0. In the latter case, a can be normalized to unity by re-scaling α
(specifically, by the transformation α→ α/b). Obviously, the existence of the unit,
eσe = e, fixes the scale of σ. Re-scaling α, we get the final form

[f, g, h] = gα (hαf) (11)

for the quantum mechanical association identity.

2.1.4. The states

Borrowing from standard quantum mechanics the fact that the states are Hermi-
tian idempotents (in Dirac’s notation, if < | >= 1 and u = | >< |, then uu = u),
we propose the following definition of abstract states:

Definition 2.1 The pure abstract states are the observables u ∈ H which satisfy
the idempotence condition

uσu = u. (12)

2.1.5. The expectation values

In quantum mechanics, the expectation value of an observable f in a state
u = | >< | is

〈f〉u = 〈 |f | 〉 = Tr(f | >< |) = Tr (fu) .

In order to take over this relation as the tentative definition of expectation values
in abstract mechanics, we assume the existence of an appropriate linear functional,
denoted by T, which is to correspond to the trace.

Definition 2.2 The expectation value of an observable f in a state u is

〈f〉u = T(fσu) . (13)
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The self–evident requirement that the expectation value of a constant, λ, (stated
more accurately, of a constant observable, λe) should be that same constant, i.e.,
〈λe〉u = λ, implies the norm condition

T (eσu) ≡ T(u) = 1 (14)

on the states.

2.1.6. Eigenvalues and eigenvectors

If uλ satisfies the characteristic equation

fσuλ = λuλ (15)

for some λ ∈ R, then, by relations (13) and (14),

〈f〉uλ
= λ, (16)

i.e., the expectation value of an observable in one of its eigen-state is the corre-
sponding eigen-value.

The algorithmic definition of T is realization-dependent. It is the trace of a
matrix in standard quantum mechanics, the integral over phase space in classical
mechanics. It is this latter realization that carries over to quantum mechanics in
phase space. Hence, we use the definition

Tf =

∫

Φ

f(x, p)dxdp. (17)

Combining (14) and (17), we get the normalization condition for the states

∫

Φ

u(x, p)dxdp = 1. (18)

2.1.7. Orthogonality

The orthogonality of states that belong to non-degenerate eigenvalues is usually
presented as a Hilbert space theorem, but it can be derived abstractly. This makes
it valid in any realization of quantum mechanics.

Definition 2.3 Two observables, f, g, are said to be sigma orthogonal if their σ
product vanishes: fσg = 0.

Theorem 2.1 The sigma orthogonality theorem. If the eigenvalues of an observ-
able, f , are not degenerate, and if its eigenvectors, uλ, are constants of the motion
with respect to f , i.e., if fαuλ = 0, then the eigenvectors are idempotent and mu-
tually sigma-orthogonal.
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Proof. Let λ and µ be eigen-values of f :

fσuλ = λuλ,

fσuµ = µuµ.

Consider the associator [f, uλ, uµ]. From the association and derivation identities
(3) and (11) follows

(fσuλ)σuµ − fσ (uλσuµ) = uλα (uµαf) .

By the assumption of the theorem, the right-hand side vanishes. Hence

fσ (uλσuµ) = λ (uλσuµ) .

Since σ is symmetric, interchanging λ and µ yields

fσ (uλσuµ) = µ (uλσuµ) .

The difference of these two equations is

(λ− µ) (uλσuµ) = 0.

Hence, for λ /=µ the states uλ, uµ are sigma-orthogonal. For λ = µ we get

fσ (uλσuλ) = λ (uλσuλ) .

Since, by assumption, λ is not degenerate, (uλσuλ) is unique up to a constant
coefficient. By relation (15), it must then be proportional to uλ. Hence:

uλσuµ = Auλδλµ. (19)

3. The harmonic oscillator

Using mass and angular frequency as parameters, the harmonic oscillator is
defined in phase space by the Hamiltonian

H =
1

2m
p2 +

mω2

2
x2. (20)

For some energy, E, the classical phase space orbit is given by the functions

x =
√

2E/mω2 sin (ωt) , (21)

p =
√
2Em cos (ωt) . (22)

These equations are our starting point for the development of the corresponding
quantal formalism in phase space. The Hamiltonian is the same in both theories,
while the orbit, an asymptotic concept in Hilbert space quantum mechanics, is in
phase space a boundary between the oscillating and non-oscillating behaviours of
quantum states.
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3.1. A dimensionless formalism

Since the quantal formalism in phase space is based on transcendental, hence in-
homogeneous, functions of the dynamical variables, the theory must be formulated
in terms of dimensionless variables. We thus replace the four physical variables
p, x, t and H,by dimensionless ones, η, ξ, τ ∈ R, and χ ∈ R+, according to the
relations

p = P0η, (23)

x = L0ξ, (24)

H = E0χ, (25)

t = T0τ. (26)

The coefficients P0 to T0 are constants of appropriate dimensions. To construct
them, one needs three dimensionally independent constants. Two are provided by
the Hamiltonian itself: the mass m, and the angular frequency ω; the third is
Planck’s quantum of action, h. We shall use h̄ , which is often equated to one.
Except for arbitrary dimensionless coefficients, which we may take to be equal to
one throughout, dimensional analysis yields the solutions

P0 =
√
h̄ωm, (27)

L0 =
√
h̄/ωm, (28)

E0 = h̄ω, (29)

T0 = 2π/ω. (30)

We shall write the energy of the oscillator in terms of the energy constant E0 and
of a dimensionless coefficient λ:

E = λE0. (31)

The orbit, Eqs. (21) and (22), is then a circle in phase space:

ξ =
√
2λ sin τ, (32)

η =
√
2λ cos τ. (33)

For the dimensionless Hamiltonian χ, one obtains

χ = H/E0 =
1

2

(
ξ2 + η2

)
. (34)

One more phase space structure, integration, is to be expressed in dimensionless
coordinates. In physical coordinates, the differential measure is simply dpdx, as in
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formula (17). In dimensionless coordinates, it is not necessarily dξdη, but it is
proportional to it. Hence, we define the trace as

Tf = N

∫

Φ

f(ξ, η)dξdη. (35)

The normalization constant N remains to be determined. It contains two compo-
nents: the Jacobian of the transformations (23) (24), which is P0L0 = h̄ = 1, and
a contribution from a parameter, c, which will be introduced in the next section.
Hence, the value of N will be selected later.

This completes the transition to dimensionless variables. We next review in these
coordinates the classical and quantum mechanical concepts we shall be referring to
later.

3.2. Classical dynamics

In the phase space Φ of canonical variables ξ, η, the algebra of dynamical vari-
ables is the class of C∞ functions. The Poisson bracket

{f, g} = ∂f

∂η

∂g

∂ξ
− ∂f

∂ξ

∂g

∂η
(36)

defines dynamics. While this symbol is typographically adequate for classical me-
chanics, it is very inconvenient for the analytic development of quantum mechanics
in phase space, where one has to take all the powers of the operation it represents.
To remedy this difficulty, we shall use the following product-like symbol to represent
the bilinear map defined by relation (36):

↔
∇ =

←
∂η

→
∂ξ −

←
∂ξ

→
∂η

. (37)

The bidirectional arrow indicates that one derivative acts to the left and one to the
right. We shall drop it for simplicity, as there will be no occasion for confusion with
the gradient operator of vector analysis. Thus, we write f ∇g ≡ {f, g}. We shall
refer to the symbol “∇” as “the Poisson product”. Clearly, it is the Lie product of
a quantal algebra, i.e., it satisfies the identities (5), ( 6) and (7) if one takes α = ∇,
and if one takes for σ the ordinary product of functions.

In general, for any dynamical variable f , the expression f ∇ represents a dif-
ferential linear operator in the space of dynamical variables. In particular, the
Hamiltonian (34) generates the rotation operator in the phase space Φ:

χ∇ = η∂ξ − ξ∂η. (38)

Like the concept of “circle”, the concept of “rotation” is not structural in phase
space, where there is no Euclidean metric. It is nevertheless a convenient concept as
long as one remains within the same coordinate system — as we do in the present
work.

FIZIKA B 5 (1996) 2, 141–158 151



grgin and sandri: the quantum oscillator . . .

3.3. Classical expectation values

The other concepts of classical mechanics whose quantum mechanical counter-
parts we are interested in are integration over phase space and expectation values.
General states are distributions in Φ, i.e., non-negative functions, ρ (ξ, η), whose
integral over phase space is equal to one:

ρ (ξ, η) ≥ 0, (39)
∫

Φ

ρ (ξ, η) dξdη = 1. (40)

For any dynamical variable, f , the expectation value in the state ρ is then given
by the integral

〈f〉ρ =

∫

Φ

f (ξ, η) ρ (ξ, η) dξdη. (41)

The pure states are delta functions,

ρ (ξ, η) = δ (ξ − ξ0) δ (η − η0) ,

whose anchor points (ξ0, η0) are functions of time and move along classical phase
space orbits.

3.4. The quantum mechanical oscillator

In dimensionless variables, the Schrödinger quantization procedure x→ x, p→
−ih̄∂x, reads:

ξ → ξ,

η → −i∂ξ,

and the Hamiltonian (34) is an operator in Hilbert space:

χ̂ =
1

2

(
ξ2 − ∂2ξ

)
. (42)

The time-independent Schrödinger equation

χ̂ψ = λψ

has the well-known solutions

ψn (ξ) = AnHn (ξ) e
−ξ2/2, (43)
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λ = n+
1

2
, (44)

An =
[√
π2nn!

]−1/2
. (45)

The probability density function ρ (ξ) = |ψ (ξ)|2 is then

ρn (ξ) =
1√
π2nn!

H2
n (ξ) e

−ξ2 . (46)

These standard formulae are listed here in dimensionless coordinates for future
reference. The following step is non-standard. It is needed here for comparison with
our later results.

We shall need the probability distribution ρ (ξ) expressed as a linear combination
of Hermite polynomials — not as the square of such a polynomial, as is the case
with expression (46). The calculation is presented in the Appendix in the more
general context of an algebra (the algebra of Hermite polynomials). Substitution of
relation (57) into the expression (46) yields the expression for ρn (ξ) in the required
form:

ρn (ξ) =
1√
π

n∑

s=0

n!

s!s! (n− s)!2sH2s (ξ) e
−ξ2 . (47)

The quantum–mechanical expectation values of a function f (ξ) in position
space, is

〈f〉n =

∞∫

−∞

ρn (ξ) f (ξ) dξ. (48)

If we compare this expression with the corresponding expression (41) in classical
mechanics, we see that there is a “loss of a variable” in the transition to quantum
mechanics. It is as if this theory had a “hidden distribution” u (ξ, η) over Φ such

that the probability density (47) were given by its partial integral
∞∫

−∞

u (ξ, η) dη.

We shall see later that this is true for the harmonic oscillator.

4. Quantum mechanics in phase space

The abstract algebraic structure {H, σ, α} which satisfies the quantum mechan-
ical association identity (11) has the standard Heisenberg representation in terms of
Hermitian operators, but it also admits a realization in the phase space of classical
mechanics, [1]. To find this realization, we start with the Poisson product ∇, de-
fined by relation (37), and observe that its powers, ∇n, are also bilinear operators
in the space of observables, i.e., if f and g are C∞ function over the phase space
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Φ, so is the function f ∇ng. The powers of ∇ are defined as the formal powers of
a binomial expression, i.e.:

∇n =
n∑

k=0

(−1)k
(n
k

)(
∂
←

η

)n−k (
∂
←

ξ

)k (
∂
→

η

)k (
∂
→

ξ

)n−k

. (49)

Consequently, if a function F (z) is defined as a polynomial or Taylor series, the
formal expression

F (∇) =
∑

n
1
n!

[
f (n)(z)

]
z=0
∇n

defines a bilinear operator in the space of C∞ functions in Φ . We can now ask if
there exit two analytic functions, one even, S (z) , and one odd, A (z), such that the
corresponding bilinear operators S (∇) and A (∇) could be equated with σ and α,
respectively, and satisfy the algebraic identities of abstract mechanics. The answer
is positive and the solution unique up to a coefficient [1]:

σ = cos (c∇) , (50)

α =
1

c
sin (c∇) . (51)

At this point, the coefficient c is an arbitrary dimensionless number. For c = 0 we
retrieve classical mechanics, for c /=0 these two products give us the phase space
realization of quantum mechanics. The numerical value of c is still arbitrary. It will
be determined later from the normalization condition.

This completes the formalism necessary to solve and discuss, in Part II, the
quantum mechanical harmonic oscillator in phase space. To get as much insight
as possible from this work, we shall solve the problem twice, first in linear coor-
dinates (positions and momenta), and then in “polar-like” coordinates (time and
energy). Both approaches lead to the same result in terms of Laguerre polynomials
— the second approach directly, the first indirectly through products of Hermite
polynomials.

Appendix: The algebra of Hermite polynomials

The product of any two Hermite polynomials is a polynomial, and, hence, a
linear combination of other Hermite polynomials. In other words, the Hermite
polynomials form an (infinite dimensional) algebra. To exhibit this algebra we
have to compute its structure constants, i.e., the numerical coefficients Ar

nm in the
expansion

HnHm =
∑

r≤n+m

Ar
nmHr. (52)

In the sequel we freely use the standard identities for Hermite polynomials, as
listed e.g. in Refs. 7 and 8. We first extract Ar

nm from this equation with the help
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of the orthogonality relation for Hermite polynomials by multiplying both sides by

Hse
−z2

for arbitrary s, and then integrating over the real line. The result is

As
nm =

1√
π

1

2ss!

∞∫

−∞

HnHmHse
−z2

dz. (53)

To perform the integration we have to reduce the integrand to a product of only
two Hermite polynomials. This can be done by repeated partial integrations. The
number of integrations will be well defined if we take the lowest order polynomial
as the factor function to be integrated. Since the orders n, m, and s are on the
same footing in the integrand (even though they are not in the full relation (53)) we
may consider any one of them to be minimal. If we assume s ≤ n, and s ≤ m, the
following suggests itself as a good splitting of the integrand into the form

∫
uv′dz:

u = HnHm,

v′ = Hse
−z2

.

We can then compute the derivative of u and the integral of v′:

u′ = 2 (nHn−1Hm +mHnHm−1) ,

v = −Hs−1e
−z2

+Ks.

Then,

∞∫
−∞

uv′dz =
[
−HnHmHs−1e

−z2

]∞
−∞

+Ks [HnHm]
∞

−∞ −
∞∫

−∞

u′vdz.

The first part vanishes identically. The second part is infinite if n +m is odd,
which implies that the integration constant Ks must vanish for all values of s.

What remains is
∞∫

−∞

uv′dz = −
∞∫

−∞

u′vdz, so that repeating the partial integration

is straightforward. Clearly, the third factor in the integrand ( 53) reduces toHs−s =
H0 = 1 after s successive integrations. Bypassing the straightforward algebra, the
end result is

∞∫

−∞

HnHmHse
−z2

dz

= 2s
s∑

p=0

s!

p! (s− p)!
n!

(n− p)!
m!

(m− s+ p)!

∞∫

−∞

Hn−pHm−s+pe
−z2

dz.
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Substitution of this expression into relation (53) with the orthogonality relation for
Hermite polynomials yields

As
nm =

s∑

p=0

n!m!2n−p

p! (s− p)! (m− s+ p)!
δn−p,m−s+p. (54)

We see that p is restricted to the value

p = (s+ n−m) /2.

In spite of its apparent half-integer form, p is always an integer. This is due
to the fact that Hermite polynomials of even (odd) order have only even (odd)
terms, which further implies that s is of the same parity as (m + n). Substitution
of the expression for p into relation (54) yields the final expression for the structure
constants of the Hermite algebra:

As
nm =

n!m!2(n+m−s)/2

(
s+n−m

2

)
!
(
m+s−n

2

)
!
(
n+m−s

2

)
!
. (55)

A case of special interest to us is the expression for the squares of Hermite
polynomials. By taking n = m and exploiting the consequence that s is even, i.e.,
by writing s = 2r, we obtain the expression

A2r
nn =

n!n!2n−r

r!r! (n− r)! , (56)

hence

(Hn (z))
2
=

n∑

r=0

n!n!2n−r

r!r! (n− r)!H2r (z) . (57)

This completes the construction of the algebra of Hermite polynomials.

We shall need one additional relation. It is the expression of even Hermite
polynomials in the argument

√
2z in terms of polynomials in the argument z. The

computation of this linear expansion will take advantage of the algebra we have
just derived.

The starting point is the addition theorem for Hermite polynomials. By taking
n = 2r and z1 = z2 = z/

√
2, this theorem yields

H2r

(√
2z

)
=

1

2r

2r∑

k=0

(
2r

k

)
Hk (z)H2r−k (z) . (58)

Since H2r

(√
2z

)
is an even function of z, the products of the polynomials in the

sum are also even. This implies that only the even structure constants, A2s
k,2r−k,

enter the expansion. Performing the substitutions, we get
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Hk (z)H2r−k (z) =
∑r

s=0
k!(2r−k)!2r−s

(s+k−r)!(s+r−k)!(r−s)!H2s (z) .

This relation, along with (58), yields

H2r

(√
2z

)
=

∑r
s=0

[∑r+s
k=r−s

1
(s+k−r)!(s+r−k)!

]
(2r)!

(r−s)!2sH2s (z) .

The expression in square brackets is easily evaluated using the substitution
m = k − r + s :

r+s∑

k=r−s

1

(s+ k − r)! (s+ r − k)!

=

2s∑

m=0

1

m! (2s−m)!
=

1

(2s)!

2s∑

m=0

(
2s

m

)
=

22s

(2s)!
.

Hence, the desired relation is

H2r

(√
2z

)
=

r∑

s=0

(2r)!2s

(2s)! (r − s)!H2s (z) . (59)
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KVANTNI OSCILATOR U FAZNOM PROSTORU

Kvantnu mehaniku je moguće formulirati u istom prostoru u kojem je formulirana
klasična mehanika. Razlika med–u tim teorijama se pojavljuje u algebarskim struk-
turama realnog linearnog prostora dinamičkih varijabli, a ne u samim varijablama.
Dakle, isti se Hamiltonijan može interpretirati ili klasično ili kvantno, što proširuje
Bohrov princip korespondencije, koji se sad odnosi na matematske strukture, a
ne samo na numerička rješenja. Kvantno–mehanička stanja su realne funkcije u
faznom prostoru, analogna gustoći vjerojatnosti u statističkoj mehanici. U prvom
dijelu članka razvija se formalizam za rješavanje kvantno–mehaničkih problema u
faznom prostoru, specifično harmoničkog oscilatora. U drugom prikazat ćemo egza-
ktno rješenje i usporedbe sa standardnim pristupom.
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