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The Lorentz integral transform method is described briefly. The resulting differen-
tial equations are solved via an expansion in hypersherical harmonics, and a new
approach is introduced for incorporating correlations in the basis functions. New
results for the total photoabsorption cross section of 3H and 3He are presented. It
is shown that the peak of the cross section is strongly affected by the three-nucleon
force. In addition, we review the results for the 4He electromagnetic response func-
tions obtained with the Lorentz integral transform method.
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1. Introduction

The Lorentz integral transform method [1] is a novel method for treating ex-
actly final-state interactions in inclusive few–body response functions. It makes
the explicit calculation of the final-state wave function unnecessary. Therefore, the
numerical effort is reduced drastically compared to the usual way of calculation.
So far the method has been applied to the calculation of the longitudinal (e,e’) re-
sponses of three– and four-nucleon systems [2–4] and to their total photoabsorption
cross sections [5–7]. While all the 4He responses were calculated with semirealistic
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central potentials, realistic interactions have also been used in Refs. 2 and 7 for
the responses of the three–nucleon system. In the case of the total photoabsorption
cross section [7], however, the only realistic NN interaction which has been used
is the super soft core TRSB potential [8]. First results with other realistic poten-
tial models will be presented in this paper, where we consider the AV14 potential
[9] and the UrbanaVIII three–nucleon force (URBVIII 3N–force) [10]. The strong
and rather state-dependent short-range repulsion requires the inclusion of state-
dependent NN correlations in our basis functions. The next section describes a new
procedure we use for the inclusion of these correlations.

First, we will briefly describe the method of the Lorentz integral transform. The
inclusive response function of a system to an external probe has the form

R(ω) =

∫
df |〈Ψf |Ô|Ψ0〉|

2δ(Ef − E0 − ω) , (1)

where Ô is a transition operator which characterizes the process under considera-
tion, Ψ0 and Ψf are the ground-state wave function and a complete set of final-state
wave functions, respectively, while ω denotes the excitation energy. The Lorentz
transform of R is given by

Φ(σR, σI) =

∞∫

ωmin

dω
R(ω)

(ω − σR)2 + σ2

I

. (2)

Due to the resonant shape of the kernel, even complicated structures in R can be
resolved if a sufficiently small σI is chosen.

The method proceeds in two steps. First, the left–hand side of Eq. (2) is calcu-
lated. This is accomplished with the help of closure

Φ(σR, σI) = 〈Ψ0| Ô
†(H − E0 − σR − iσI)

−1(H − E0 − σR + iσI)
−1Ô |Ψ0〉

= 〈Ψ̃|Ψ̃〉 , (3)

where E0 is the ground-state energy of the Hamiltonian H, and Ψ̃ is determined
by the equation

(H − E0 − σR + iσI)|Ψ̃〉 = Ô|Ψ0〉 . (4)

Because of Eq. (3), the norm of Ψ̃ exists and thus, contrary to continuum wave

functions, Ψ̃ vanishes at large distances like a bound state wave function. Therefore,
the solution of Eq. (4) is much simpler than that of the continuum state Schrödinger
equation.

The second step is the inversion of the transform Φ in order to obtain R(ω).
For this purpose, Φ is calculated for a set of positive σR values with a fixed σI > 0.
Details of the inversion are discussed in Ref. 7.
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2. Formalism

We solve Eq. (3) and the Schrödinger equation for the nuclear ground-state
wave function as an expansion over a set of basis functions. Eventually, it leads to
a system of linear equations for the expansion coefficients. The basis functions φi

are antisymmetric with respect to particle permutation. They consist of products of
a spin–isospin part θµ and a spatial part χi,µ̃. Both parts have a given type of per-
mutational symmetry in order to guarantee a totally antisymmetric wave function.
For the spatial part, we use products of symmetrized hyperspherical harmonics
(HH) and hyperradial functions. The HH expansion is made to a maximal value
of K, where K is the generalized angular momentum quantum number. Further
details of the basis functions as well as the technique for the calculation of the
matrix element of the Hamiltonian are described in Ref. 7.

In our previous calculations, we applied state-independent correlation func-
tions, i.e. a multiplication of the basis functions by a Jastrow correlation factor∏

i<j f(rij). In the present work, we use spin-isospin dependent correlation func-

tions fST (r). To this end, we define a state-dependent Jastrow correlation operator

ω̂ = Ŝ[
∏
i<j

∑
ST

fST (rij)P̂ST (ij)] (5)

with

P̂ST (ij) =
1 ± (ij)S

2

1 ± (ij)T

2
. (6)

Here P̂ST are the projection operators onto a given spin and isospin state of a
nucleon pair, (ij)S,T are permutation operators of spin and isospin of particles i
and j, fST are the pair-correlation functions depending on the interparticle distance
rij , Ŝ is the symmetrizer with respect to the ordering of particle pairs [10,11]. We do
not include tensor correlations in Eq. (5) since normally only central components of
the potential lead to strong short-range repulsion. Correlations of longer range are
presumably sufficiently described directly by our basis functions without making it
necessary to include HH functions with a very high K.

In the three–body case, which is considered in this work, the correlation operator
is presented by the matrix

ωλµ =

4∑
i1,i2,i3=1

fi1(r12)fi2(r13)fi3(r23)M(λ, µ; i1, i2, i3) (7)

with

M(λ, µ; i1, i2, i3) = 〈θλ|Ŝ(P̂i1(12)P̂i2(13)P̂i3(23)|θµ〉 . (8)

Once the matrix M(λ, µ; i1, i2, i3) is calculated, the new basis functions are defined
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by

φnew
i =

∑
λ,µ

[ωλ,µχi,µ̃θλ] . (9)

The calculation then proceeds in the same way as for an uncorrelated basis.

We would like to point out that the above method of introducing correlations in-
corporates correlations after symmetrization of the wave function. This is different
from the approach of Ref. 12, where the correlation is inserted before symmetriza-
tion. As opposed to our method, this does not guarantee that an NN pair with
a specific ST value is always correlated with the corresponding ST correlation
function.
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Fig. 1. The correlation functions gST (r) for ST = 13, 31 and 33.

The correlation functions fST (r) are obtained as follows. For any NN potential,
we take them at r < r0 as the zero-energy pair wave functions in the correspond-
ing ST -state. The distance r0 represents the healing distance. This implies that
f(r) = 1 at r > r0 and f ′(r0) = 0. The ST pair wave functions are calculated in
the following way. For ST = 11, 13, 31 and 33, we take the potential for the NN
partial waves 1P1,

1 S0,
3 S1 and 3P1, respectively. For ST =11 and 33, however,

the potentials are not sufficiently attractive in order to obtain a healing distance.
Therefore, we introduce an additional central attraction of intermediate range. The
strength of the additional interaction is fitted such that a healing distance of 10 fm
is obtained.

The presence of other nucleons in a nucleus alters the free correlations of a
nucleon pair. We try to incorporate such effects by the introduction of a scaling
factor αST for the argument of the correlation function, i.e. instead of fST (r) we
take a new correlation function gST (r) = fST (αST r). The scaling factors are fitted
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in order to obtain the highest possible binding energy for the ground state, taking
an expansion of the ground-state wave function up to K = 10. The fits lead to
modified healing distances of r0/α. For ST = 13, 31, we find α–values rather
close to 1, while there are larger effects for the other two channels (α33 ≃ 1.45,
α11 ≃ 0.5). The correlation functions found for the bound state are used in solving
Eq. (4) without changes. The correlation functions for ST = 13, 31, and 33 are
illustrated in Fig.1.

3. Results and discussion

First, we discuss the total photoabsorption cross section of the three–nucleon
systems. It is well known that the cross section is reliably calculated in dipole
approximation. In this case, one has to consider the response function

R(Eγ) =

∫
df |〈f |Dz|0〉|

2δ(Ef − E0 − Eγ) , (10)

where Dz is the nuclear dipole operator. The cross section is given by

σT = 4π2(e2/h̄c)EγR(Eγ). (11)

Formerly, we calculated σT employing semirealistic potential models [6] and the
realistic TRSB NN interaction [7]. Here we also consider the AV14 NN potential
and the URBVIII 3-N force. First, we briefly discuss our results for the ground
state. The correlation operator we use allows a reduction of the number of the
basis functions to be retained in the calculation. For a further reduction, we select
subsystems of HH from their complete sets at given high K values. We find that
it is sufficient to include only basis functions, where the relative pair and third-
particle angular momentum quantum numbers before the symmetrization are less
or equal 2, and we checked that other basis functions contribute only negligibly to
the three-nucleon binding energy. In the early work, starting from Ref. 13, such a
selection has been used with no correlation operator applied to the basis functions,
and we thus find that the selection is effective also in conjunction with the Jastrow
correlations.

With a maximal K value of 34, we have a sufficiently good convergence of the
HH expansion for the binding energy, we obtain 7.64 MeV (AV14) and 8.47 MeV
(AV14+URBVIII). From an extrapolation of K to infinity via a Pade approxima-
tion, we estimate a missing binding energy of less than 0.05 MeV. The binding
energies for both potential models agree well with the values in the literature (7.67
MeV [14], 8.46 MeV [10,14]).

For Ψ̃ of Eq. (4), whose norm gives the Lorentz integral transform, we make
an expansion up to a maximal K of 15. As in Ref. 7 for the TRSB potential, we
find that the Lorentzian transform for the isospin channel T = 3/2 has a very rapid
convergence. However, for the T = 1/2 channel, we have a much slower convergence
than for the TRSB potential. In principle, higher values of K are needed in order
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to have a satisfactory convergence. In the future, we will improve our results by ex-
tending the calculation to higher K. This is not trivial, however, since the number of

5 10 15 20 25
ωγ [MeV]

0.0

0.5

1.0

1.5

2.0

2.5

σ γ [
m

b]

TN
MT
V14 + Urb VIII (Pade)
V14 (Pade)

Fig. 2. Triton total photoabsorption cross section with AV14 potential (long dashed
curve) and AV14 plus URBVIII 3N–force (full curve) in Pade approximation (see
text), also shown results with MT (dash-dotted curve) and TN potential (short
dashed curve); experimental data from Ref. [17] (represented by the error band).
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Fig. 3. 3He total photoabsorption cross section with AV14 potential plus URBVIII
3N–force (full curve) in Pade approximation (see text); experimental data from
Refs. [17] (error band is represented by the dotted curves) and [18] (full circles).
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basis states is already rather large and we cannot simply increase K to much
larger values. Therefore, we have to study whether some of the HH basis states
do not contribute and can simply be omitted. Here, we will show results, where the
T = 1/2 part of the transform is calculated with the help of a Pade approximation.
As input, we take the T = 1/2 transforms with a maximal K of 11, 13, and 15. The
additional contribution to the transform due to the Pade approximation is at most
of the order of 5%. The correction is not very sizeable, but nevertheless our results
have to be considered preliminary. The calculated effect of the 3N–force should be
rather reliable, since we do not think that the missing contribution of the higher
K values is sensitive to the 3N–force.

In Fig. 2, we show the total photoabsorption cross section of 3H for various
potential models in the low–energy region. It is evident that the 3N–force leads
to a rather strong reduction of the peak height. However, one has to consider
that the correct description of the nuclear bound state is rather important for the
low-energy cross section. This can already be understood form the inverse energy
weighted sum rule, which is proportional to the square of the proton point radius
of 3H. A simple scaling of the cross section with the square of these radii for AV14
and AV14+URBVIII would lead to a reduction of the AV14 cross section by 7.7 %.

Compared to the available experimental cross sections shown in Fig. 2, one finds
a rather good but not totally satisfactory agreement. To make a final conclusion,
we must await our improved calculation with higher K for the T = 1/2 transform.
In Fig. 2, we also illustrate results with two semirealistic central potentials (MT
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Fig. 4. Total 4He photoabsorption cross section with MT and TN potentials. Ex-
perimental cross sections: shaded area [19]; sum of partial cross section for total
neutron breakup [20] and two–body proton breakup [21] (dotted curve with typical
size of the experimental error). Also shown are doubled experimental cross sections
for two–body proton breakup [22] (open circles) and for two–body neutron breakup
[23] (triangles) and [24] (full circles) (for further explanation see text).
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potential [16], TN potential [7]). It is interesting to see that they lead to results
rather similar to the more realistic interactions.

In Fig. 3, we show the 3He cross section in an extended energy range compared
to the experimental data. One sees a rather good agreement with experimental
data over the whole energy range.
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Fig. 5. Longitudinal response functions of 4He with TN potential (full curves) in
comparison to the experimental data of Refs. [26] (diamonds) and [27] (full circles).
The quasielastic response is also shown (dashed curve).

Next, we turn to the 4He total photodisintegration cross section. In Fig. 4, we
show our figure from Ref. 5 but including here also a total photoabsorption cross
section which is determined from elastic photon scattering [19]. Only this data point
and the dotted curve of Fig. 4 (sum of cross sections of all neutron breakup channels
plus cross section of p3H channel) can be considered as direct experimental data
for the total cross section. All other cases are pseudo data, where we have simply
doubled the cross sections for the two–body breakup cross sections (n3He, p3H)
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assuming that these two channels are more or less equal and dominant for the
low–energy cross section. It is readily evident that a much more pronounced peak
of the giant dipole resonance is predicted with the semirealistic potential models.
Only the experimental point extracted from photon scattering comes closer to the
theoretical cross sections. Considering the triton results of Fig. 2, one would not
expect that the semirealistic potential models would give such an overly large cross
section for 4He. Moreover, the integrated cross section (TRK sum rule) has been
evaluated with realistic potential models [16], and these values are considerably
larger than the TRK sum rule value with MT and TN potentials.

Next, we consider the longitudional (e,e’) response function of 4He. As transition
operator, we take the one–body charge operator

Q =
1

2

A∑
k=1

(Gp
E [1 + τz,k] + Gn

E [1 − τz,k]) exp[iq · (rk − Rcm)] . (12)

Here Gp
E and Gn

E are the modified [25] free proton and neutron electric form fac-
tors, respectively, while τz,k denotes the third component of the isospin of the kth
nucleon.

In Fig. 5, we show the longitudinal response function 4He for the momentum
transfers q = 300, 400 and 500 MeV/c from Refs. 3 and 4 calculated with the semire-
alistic TN potential. For all three-momentum transfers, one sees a good agreement
between theory and experiment. Figure 5 also contains the results of a plane-wave
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Fig. 6. Ratios of quasifree and full 4He longitudinal response functions for various
momentum transfers.
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impulse approximation (PWIA), which has been calculated using the exact spectral
function of 4He for the TN potential [4]. At q = 300 MeV/c, one finds rather large
differences, but for the higher momentum transfers, the peak region is described
much better. In Fig. 6, we show the ratio of the PWIA and exact responses,
where also q = 600 MeV/c is included [7]. The comparison shows that the PWIA
response is a rather good approximation in the peak region. The quality of the
approximation improves with increasing momentum transfer, indicating an error of
only a few percent for q greater than 1 GeV/c.

4. Summary

We have shown that the Lorentz integral transform approach is a very fruitful
method. It leads to a drastic reduction in the numerical calculation for few–body
response functions. This enabled us to make various realistic calculations for the
first time (e.g. three– and four–body total photoabsorption cross sections, 4He
spectral function). In this work, we have introduced a new correlation scheme for
few–nucleon calculations. Furthermore, we could show that there are rather strong
effects of the 3N–force on the low–energy peak in the three–nucleon photodisinte-
gration. However, as mentioned, we still have to improve our calculation in order to
obtain a completely convergent HH expansion for the Lorentz integral transform.
It will be very interesting to have the complete results with and without the effects
of the 3N–force.
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ELECTROMAGNETSKE ODZIVNE FUNKCIJE ZA NEKOLIKO TIJELA I
LORENTZOVA INTEGRALNA TRANSFORMACIJA

Kratko se opisuje metoda Lorentzove integralne transformacije. Dobiju se diferen-
cijalne jednadžbe koje se rješavaju razvojem po hipersferičnim harmonicima i uvodi
se nov pristup radi uključivanja korelacija med–u osnovnim funkcijama. Prikazuju
se novi ishodi računa za ukupni udarni presjek fotoapsorpcije 3H i 3He. Pokazuje
se kako na vrh udarnog presjeka jako utječu tro-nukleonske sile. Još se daje pre-
gled ishoda računa za elektromagnetske odzivne funkcije 4He koji su postignuti
metodom Lorentzove integralne transformacije.
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