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Collective Ilansport in Charge and Spin Density Waves
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ABSTRACT
\Ate review the recent theoretical study of the Frdhlich conduction on charge density

wave (CDW) and spin density wave (SDW). We limit ourselves to the threshold electric
field and the electromechanical effect in these systems.

r. INTRODUCTION

It is well-established that CDW and SDW are described by quasi-two dimensional
Fr6hlich (Hubbard) model [1 - a]. The mean field ground state in these models is the
CDW (SDW). An essential ingredient is the imperfect nesting, which is controlled by
Pressure or by magnetic field. For example, such a model describes quite wetl the observed
electron tunneling densities of two CDWs in NDSe, [E].

Further, the same model describes the cascade of field induced spin density waves
observed in (TMTSF)zclo4 afi (TMTSF)2PFs under pressure [o - 8]. Here again the
imperfect nesting is crucial.

2. Phason Dynamics

The effective Hamiltonian density which describes the phason dynamics (e.g. the
sliding motion of CDW and SDW) is obtained from the microsconic theory and written as
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where

vn,^(6) = -2N.)-'a(r)v f co.[d .i + g(fl]6(x - r;). (2)

and

vn,^(6) = -blz N"v]': A(") tonhl^(r)lzrl

x f .o,lz(0.r+ d("1)16(c - c;). (3)

lor a CDW and a SDW respectively. Further for a SDW, we have m* f rn= !.
The electric charge and the current associated with the spatio- temporal variation of

/ is given by

p : -enf Q- t 0glEr

and

J = enf Q-L Aflat
which satisly the CDW (or SDW) chargc conservation.

(4)

Indeed, the electric charge carricd by CDW or SDW can be converted to that carried
by quasi-particles only through topological defects like phase vortices (or dislocation) [lO].
The function / here depends in general on t.r and f : vq, where o and q are the frequency
and the wave vector associated with d. Horvever, in the adiabatic limit / takes simple
forms

,-llo fort'r>ug
'-l/, fort^r<ug

whcre /" and /, are called the dynamic and the static limit of the condensate density.
In particular, in the limit of the perfect ncsting the temperature dependence of f1 is thc
same as that of the superfluid density in a BCS supertonductor. For the dc conductiv-
ity including the nonohmic regime ! = !, should be used unless E is extremely targe,
since / involved is dominated by spatial distortion. On the other hand, in the microwave
conductivity f : f" has to be used.
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3. Threshold Electric Field

Perhaps, the most direct application of the phase I{amiltonian Eq (t) is the calculation
of the threshold electric field 81 [tt]. we follow the analysis by Fukuyama and Lee [12]
and Lee and Rice Ita] on a phenomenological model, since the structure of Eq(l) is the
same as in the phenomenological rnodel.

First, let us consider a CDW. It is important to distingrlish two limiting cases; the
strong pinning limit and the rveak pinning limit. In the strong pinning limit a single
impurity can pin down the local phase of the CDW. Then the thrcshold field is given as
sum of individual contributions [11].

nf (o) : 2Q leA (n; ln)N,lzA(o)
and

Ei g) I E](,) = [a1r17a(,)] [r/r, (r)]
rvhere ni is the impurity concentration and rve made use of the relation

L(r) = p,Q)lp (ro)

The present expression describes the sharp divergence of. E, at T : T" observed in a
number of CDWs [14] but cannot describe the increase of .E1. at low temperatures, The
latter effect is certainly due to the thermal fluctuation of / or the Debye- Waller factor of
{ and the inclusion of this effect gives [t5]

(8)

(e)

Ei g) I Ei (o) = s- r tr. [r1r17r1a] lol 4@l
where the anisotropic Frohlich model gives

(11)

T" = 2tr,t"lL(o) (12)

where 16'f" are the electron hopping integrals in the transverse directions.

In the weak pinning limit, only a collection of irnpurities can pin the phase and we
have [rr]

ni k) o( n2t4-D [o(o)]"'-" (rs)

and

Ey (r)tEy (,) = lri (\tEi(o)]"' (r 4)

rvhere D is the spatial dimension of the cDW. we have shown already Itr] that Eq(rl)
with D = 2 gives an excellent description of Er(7') of the first CnW wnite nq(fZ) does



51

that of the second CDW of .&'bSe3 determined by Fleming It6i. More generally, all of
data collected by \{onceau ItA] can be fitted eithcr by Eq(rr) or Eq(la) except those for
orthorhombic TaS3 and blue bronze. Thbugh the origin of these discrepancies are not
clear at the present moment, the change in Q towards the commensurable value at lorv
temperatures may have a role in this.

Also, rve don't understand why D : 2 should be appropriate. But we have other
instances rvhere D : 2 appears to be more appropriate. For example, for D : 2, the
asymptotic values of the sliding velocity al E + m and E - Er should be constanr
and (E -.81) respectively in contrast to the result by Sneddon et al [17] and Fisher [181.
Indeed, the D : 2 result of the deformable CDW is consistent with Bardeen's tunneling
expression ItO] and therefore describes much better non-ohmic conductivity observed in
CDWs. Finally, the electron density ol states observed by tunneling technique [20] in
CDWs of NbSe3 is more consistent rvith the 2 D model [5].

Norv let us consider a SDW. A similar analysis gives in the strong pinning limit Itt]

Ef (o) : Qle (n;ln) (trN"V)2 L(o)

and

Eie)lEi(") : (a1r17a1o1)rann(a e)l2r)(o/n@) (16)

unlike the case for a cDW, -81. increases monotonically to the value at f = [, since
for Bechgaard salts the effect of the thermal fluctuation is completely negligibte. Similarly,
in the weak pinning limit, we obtain

OY k) o( n2t4- D

and

DY (r')l\{ (,) = (ri g)lDi.(o))"' (r8)

The predictcd tempcrature dependences of .81 arc shorvn in Fig. 1 for the strong pin-
ning limit and the weak pinning limit rvith D=2 and 3. Ilecently, the non-ohmic conduc-
tivity in SDWs of ('IMTSF)2NO3,(TMTSF)2PF6 and in quenched -(TMTSF)2CIO.
are observed by'tomii et al [2], 221 and Sambongi et al [231. Both thc observed value
of ,Oa and the temperature dependence of E7 are qualitatively consistent with Eqs(fS)
- (18). However, the (TMTSF)rp& *ith a clumped contact [21] exhibits a rather un-
expected temperature dependence of 87. Perhaps, the commensurability potential may
have some role here though the SDW in (TMTSF)rPF'o appears to be incommensurate
in the transverse direction. If Er (?) is due to the commensurability potential we would
have

(r5)

(1i)[o(o)]"'-"
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Figure 1. The temperature dependence
of the threshold field is shown for the
strong coupling limit (s), for the weak
coupling limit with D = 2(Wz) and D :
3(W3) and when the pinning is entirely
due to the commensurability potential
(c).

f.0

(1e)EF e)lEF 1o1 = (r1ry7^(,)) (olo,@)

Further E1 at T =0K, should be about an order of magnitude smaller than that due
to impurities when the impurity concentration of a few ppm.

. l\: observed Er (T") I Er (o) in (T MT^g.t'), pq with rhe norrnar conract lzzl is -2.s,which lies in between our rveak pinning D=l (g,t3) and D=2 (t.7?) values. ito*.uu.,
the discrepancy is most likely due to the commensurability effect or due to eo (unnesting
parameter, which rve have so far neglected). The pressure dependence oi E1 (") (which
controls eo ol Ev (?) shoulcl be crucial to decide the origin of this discrepancy.

4. Dlectromechanical Effects

The softening of the elastic constanls when the CDW (SDW) is depinned is another
signature of thc Frohlich conduction first established experimentaliy by Brill et al [2a] and

!1,M31urfewich et al [zs]. We can interpret thc electromechanical effcct as totlows [zo,27]. The ionic potential is screened by the conduction electrons in a normal metal. In
a CDW (SDW)' on the ot'her hand, the potential is screened by the quasi-paticles and
the phasons. However, when the cDw (sDw) is pinned, the phason cannot participate
in the screening, while the quasi particle density decreases as the temperature decreases.
Therefore, in the limit w << Dq2 where o and q are frequency and wave vector of the
sound wave and D is the diffusion constant, the elastic constant (and the sound velocity)
increases in a CDW (SDW) like
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c=co(r-.11r. /,)) (20)

when the cDw (sDw) is pinned rvhere c6 is the bare sound velocity. For example,
Eq(zO) describes quite well the temperature dependence of the sound velocity in a SDW of
(TMTSF)'PF6 observed by Chaikin et al [28]. Now, when the CDW (SDW) is depinned
by application of the electric field, the phason contributes screening. Then in the high
field limit C recovers Cry the sound veiocity in the normal state, since the sum of two
contributions is the same as. the screening in the nor,rnal state. Indeed, this limiting
behavior has been predicted earlier by Nakane and Takada [ZO], who neglectgd the pinning
effect completely.

so far, we considered the limit u <1 Dq2. on the other limit w )) Dqz , the situation
is somervhat different. In this limit, the quasi particle contribution is of tittle importance
to the screening of the ionic potential. Therefore, nothing happens to the etastic constant
at the transition temperature if the cDW (SDw) is pinned. However, rvhen the CDW
(SDW) is depinned, the phasors still contribute in the screening at low temperatures.
Therefore, the elastic constant decreases with electric field at lorv temperatures, we have

C,,,^-C6",,;o=\Co (21)

independerit of w f Dq2 . This will provide a useful means to determine the dlectron-phonon
coupling constant ,\.
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