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We discuss how quantum lattice fluctuations can destroy a CDW. Usually, CDW are
treated within the adiabatic approximation (i.e mean field approximation). However, the validity
of this approximation, which neglects the quantum lattice fluctuations, remains uncontrolled.
We analyse this problem in one dimensional models. The main result that we have obtained is
that incommensurate CDW with a strictly gapless Frohlich mode are necessary destroyed by the
quantum fluctuations. Our approach can also be used for the commensurate case, specially for
the half-filled band case, which is important for conducting polymers as it will be reported in
ref. [1]. It has been previously (see reference in ref.[3], this proceeding) shown that within the
adiabatic approximation, incommensurate CDW are of two types:

" 1) "analytic CDW”. For small enough electron-phonon coupling, the CDW has a strictly
gapless Frohlich mode (phason) and is conducting by the coherent displacement of the CDW
associated with its periodic lattice distortion (PLD) under the action of an electric field. Let us
note that no strictly gapless phason mode has ever been observed in real compounds (eg the
blue bronzes of molybdenium).

2) "non-analytic CDW”. For electron-phonon coupling larger than a critical value (which
belongs to the physical range!), in the absence of any defects or impurities, the CDW is
intrinsically pinned to the lattice. The gap of the phason mode is non-zero. The CDW can be
interpreted as incommensurate arrays of ordered and localized bipolarons (ref.[2]). The earlier
numerical observations are now supported by a rigorous result valid at any dimension (see [3]).
Such CDW are "defectible” by localized defects of the bipolaronic structure (ref.[2]).

We start with the mean-field Holstein hamiltonian (eq.3 in ref.[3]), with the same

notations), which becomes using the equality <u;>= - %<ni>:
(1) Hup = - 4 C tei o o+ K <u> + 4 <>2+Y—p22
MF = - 35 Z Ci,o'Ci,0 t 3L Ni<uj 7 ((up-<up>) 3 n®)
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k and y are the electron-phonon coupling and the quantum lattice parameter respectively
both in reduced units. The problem of finding the ground-state and the excited state of (1), is

the same as for solving the adiabatic hamiltonian (y=0). Accurate numerical calculations yields
the mean lattice distortion <u;> and the electronic wave functions for the ground-state. These

lattice distortion can be written using a 2 w-periodic hull function g(x) as:
(2)  <up=g2nif)

where { is the number of pairs of electron per site. Fig.1 shows g(x) calculated with two
different couplings k for a loop with 21 electron pairs over 55 sites. For this band filling
{=21/55, the transition of breaking of analyticity occurs at k=k.({)=1.57. For k<k, the CDW
is "analytic. For k>k., the CDW is non-analytic. In the second regime, some examples for the
shape {b;} of the bipolarons (defined by eq.4 in ref.3) are shown fig.2 for a system 21/55.

For large k, this bipolaron becomes localized on a single site. It extends when
decreasing k and its size diverge at k.. Let us note on fig.2, the evolution of the localization
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when k varies. In addition to the ground-state, there exist infinitely many other eigenstates
corresponding to the bipolaronic configurations.

fig.1
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Let us now discuss the validity of the mean-field (i.e. adiabatic) approximation. For any
metastable configuration {<u;>}, the corresponding mean-field approximation quantum state is
exactly given by eq.5 ref.[3]. To be good approximations for the eigenstates of the initial

hamiltonian (1) in ref.[3], a necessary condition is the orthogonality of these states. For y small
and fixed, it can be shown analytically that the overlaps <W{|¥7> and <¥{[H|¥»> (which can
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be calculated explicitely) between any couple of different mean-field eigenstates [¥1>and |¥y>

sharply drop to zero as soon as k is slightly larger than k.. Therefore, for small Y, and k>k, the
bipolaronic states are quite good eigenstates of the quantum Holstein hamiltoniar,

When k approaches k. from above, these overlaps <¥{/¥>> become close to unity for
many couples of metastable states which only differs localiy by a finite number of defects.
Consequently, the validity of the mean field approximation necessaril ly breaks down for some

k.*(C,y) slightly above k() whatever y be small (but non zero). More precisely, the exact

knowledge of these overlaps can be used for example, for estimating numerically the quantum
correction to the energy of the discommensurations of a commensurate CDW due to its
tunnelling through the lattice. The trying eigenstate fora tunelling discommensuration is a linear
combination of the mean-field eigenstates corresponding to a discommensuration iocated
successively in each unit cell. The total energy of this quantum discommensuration is then the
sum of a positive potential (classical) energy (see curve (1) on fig.3) and of a negative quantum

energy -AEq (see curve (2) on fig.3). It becomes always negative when k is smallier than the

critical coupling k.*({,y) corresponding to strong overiaps. In physical terms, this quantum
instability essentially originates from the softening of the lattice pinning mode (i.e. the phason
mode) of the bipolarons due to the increasing of their size. The same result holds both for
advanced and retarded quantum discommensurations which proves that the commensurate
CDW becomes unstable.
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fig.3: Energy of the defect for a
(1) commensurate system 21/55. The
curve I is the sum of the potential
energy of a retarded defect, plus
an advanced defect.
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When { goes to an irrational number L, the classical energy of a discommensuration
goes to zero while the quantum correction does not when the CDW is gapless. We find

ke(8)=k*(Z,0)<kc*(L,y). In principle, the same method can be extended to models in 2 and
more dimensions for analysing the tunnelling energy of any kind of localized defécts in the
bipolaronic structures. We expect the same result: CDW with strictly gapless Frohlich modes
are always unstable against quantum lattice fluctuations.

In summary, we have essentially proven here that in the case of a zero (or sufficiently
small) phason gap, the validity of the adiabatic approximation breaks down and then the CDW
are unstable against quantum phase fluctuations. Therefore, it is clear that the estimation of the
defect energies shown here hold only for bipolaronic CDW which are stable. For unstabie
CDW, the mean-field eigenstates become too bad approximations for the eigenstates of the
initial hamiltonian to be used as a base for expanding the genuine eigenstates. As pointed out in
ref [3], the "antiadiabatic effect” (inducing probably superconductivity) have to be taken into
account in this regime where CDW are destroyed by quantum lattice fluctuations. A better
understanding of these features are currently under development.
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