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INCOMMENSURATE CHARGE DENSITY WAVE
WITH QUANTUM LATTICE FLUCTUATIONS
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We discuss how quantum lattice fluctuations can destroy a CDW. Usually, CDW are
treated within the adiabatic approximation (i.e mean field approximation). However, the validity
of this approximation, which neglects the quantum lattice fluctuations, remains uncontrolled.
We analyse this problem in one dimensional models. The main result that we have obtained is
that incommensunte CDW with a stricily gapless Frtihlich mode arc necessaq/ datroyed by the
quantum fluctuations.Our approach can also be used for the commensurate case, specially for
the half-filled band case, which is important for conducting polymers as it will be reported in
ref. Il]. It has been previously (see reference in ref.[3], this proceeding) shown thatlyithin the
adiabatic approximation, incommensurate-CDW are of two Spes:' l) "analytic CDW'. For.small enough electron-phonon coupling, the CDW has a strictly
gapless Friihlich mode (phason) and is conducting by the coherent displacement of the CDW
associated with its periodic lattice distortion (PLD) under the action of an electric field. Let us
note that no strictly gapless phason mode has ever been observed in real compounds (eg the
blue bronzes of molybdenium).

2) "non-analytic CDWI. For electron-phonon coupling larger than a critical value (which
belongs to the physical range!), in the absence of any defects or impurities, the CDW is
intrinsically pinned lo the lattice. The gap of the phason mode is non-zero. The CDW can be
interpreted as incommensurate arrays of ordered and localized bipolarons (ref.[2]). The eadier
numerical observations are now supported by a rigorous result valid at any dimension (see [3]).
Such CDW are "defectible" by localized defecs of the bipolaronic structuie (ref.[2]).

We start with the mean-field Holstein hamiltonian (eq.3 in ref.[3]), with the same

notations),whichbecomesusingtheequality <ui>= - Fntt,

{ l) FIMF =

k and y are the electron-phonon coupling and the quantum lattice parameter respectively
both in reduced units. The problem of finding the ground-state and the excited state of ( l), is
the same as for solving the adiabatic hamittonian (y=0). Accurate numerical calculations yields
the mean lattice distortion <ui> and the electronic wavc functions for the ground-state. These

lattice distortion can be written using a 2 n-periodic hull function g(x) as:

<ui> = g(2zr i[)

where ( is the number of pairs of etectron per site. Fig. I shows g(x) calculated with two
different couplings k for a loop with 2l electron pairs over 55 sites. For this band filling
l=21/55, the transition of breakingof analyicity occurs at k=k(O= 1.57. For k<k", the CDW
is "analytic. For k>$, the CDW is non-analyic, In the second regime, some examples for the
shape {b1} of the bipolarons (defined by eq.4 in ref.3) are shown fig.2 for a system 2V55.

For large k, this bipolaron becomes localized on a single sitc. It extends when
decreasing k and is size diverge at k. Let us flote on fig.2, the evolution of the localization
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when k varies. In addilion to the ground-state, thcre exist infinitely many other eigenstates
corresponding to the bipolaronic configurations.
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Let us now discuss thc validity of thc mean-field (i.e. adiabatic) approximation. For any
metastable configuration {<ug>} , the corresponding mcan-field approximation quantum state is
exactly given by eq.5 ref.[3]. To be good approximations for thc cigcnstates of the lnitial
hamiltonian (l) in ref.[3], a necess:rry condition is the orthogonality of thesc statcs. For y small

and lixed, it can be shown analytically that the overlaps <YrlYP and <lPtHlVp (which can
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be calculated e:rplicitcly) between any couplc of different mean-tield eigenstates lV1> and lV2>

$"rylv drop to zero as soon as k is slightly larger than k. Therefore, for smal! y, and k>k" the
bipolaronic states arc quite good eigenstates of ihc guantum Holstein tramittonian.'

When k approaches k" from above, these overlaps <Y1l\Pf become closc to unity for
many couples of metastablc 

-states 
which only differs locallybyl finite number of deficts.

Consequently, the validity of the man fietd ipproximation iecissariiyar*rc aot- foi ro*"
k"'((,y)-slightly above kd0 whatever y bc sma[ (but non zero). More precisely, rhe exact
knowledgc of these overlaps-can be used for example, for estimating numericallv tiie quanrum
correc-$on to the e-nergy of the discommensurations of a comm&surad aDW;": toJ;
tunne[ing throqgh the lattice. The trying eigenstate fora tunelling discomminsuration isa linear
combination of thc mean-field- eiiensrates corrcsponding to i discomrnensuration located
successively_in each unit cell. The [otal energ:y of tliis quaritum discommensuration is then the
sum ofa positivc potenrial (classical) energy(ice curveit) on fig.3) and oia n"gativc euanlu;
energy 'AEg (see curve (2) on fig.3). It bccomes always negative when k is smaller thaa the
critical--coupling ki$,y) 

-corrcponding to strong overlaps.In physical terms, this quantum

::?litiyS:entiallv originates f1om. rhe softening of rhe iattiqe pinning mode (r.r. ir,i pir*""
m-ooe/ ol the_Dipolarcns due to thc increasing of their size. The same result holds b6th for
advanced and retarded quantum discommensirrarions which pioves ii"iirti .il;ilili;
CDW becomes unstable.
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fig.3: Energy of the defect for a
coryNren$rrrafe s;rcfem ZMSS" Ifte
currry .f is the sum of the ptentia!
energy of a rekrded defirct, pfus
an advanced defbct.
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When ( Soes to an irrational number (, the classical energy of a discommensuration
goes to zero while the quantum correction does not when the cbw is gapless. we nnJ
kJf)=k1(,0)<k'_(i,v). [n principlc, thc same method can be extended ro models in 2 and
more dimensions for alglysing the- tunnelling en€r![/ of any kind ottocatizea aefectsln irrebipolaronic structures. wc expict the samc r&utircbw *iil ittr.tiiiiii"* Fr6irii;h';;;;
are always unstable against quantum lattice fluctuations. J e t

In summary, we hY.e ess-entially proven here that in the case of a zero (or sufficientty
small) phason 8fP, the validity of the adiabatic approximation breaks d-own and ihen ttre Cod
are.unstable pairyt quantum phase fluctuations. liereforc, iiis 
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enersies shown here hold only for bipotaronic cDW wtich 
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-Foi;;ildi;
Lrr\ry' tne mean-lleld eigens131s5 become too b,ad approximations for the cigenstates of theinitial hamiltonian ro be.used us 3 Fry for expandin-g ilir g;"in;;G;;... A" ;;ili"d;;i;ref [3J, the "antiadiabaric.effecr" (inducing p'robabt"y r"d;;&;i"iilfn"". i;1;;ilil;
account in.this regirne^where CDW are deitroycd by quantum latdcJ'fluctuatio"t. A-6"'tto
unoersunomg ol tncse leatures are cunently under development.
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