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DESCREENED FROHLICH MODE IN CHARGE DENSITY WAVE SYSTEMS

W. Wonneberger
Department of Physics, University of Ulm,
D-7900 Ulm, Fed. Rep. of Germany

Abstract: The influence of the long-range Coulomb interaction on the
complex ac conductivity ocbw(w)'of pinned incommensurable chérge density
waves (CDW) in quasi one-dimensional semiconductors is studied. A modi-
fied Fukuyama-Lee-Rice (FLR) approach is developed in which the extrinsic
phason damping Y, is replaced by a non-local damping function yren(g,w).
The actual evaluation of ocpw makes use of quantitative results for self
energy functions I(w) of the original FLR model for different spatial di-
mensionalities d and pinning strengths. The absorption profile Reo(w)
displays a low frequency tail due to a relaxation mode. The pinning fre-

§=—Rez(mp) is significantly influenced by selection

quency defined as w
rule breaking via inhomogeneous pinning. Furthermore, the dependence of
mp on impurity concentration is quite different from the scaling results

of FLR. An excellent fit to measured data is obtained.

Density waves, involving either charge or spin density modulation in
real space are among the possible ground states of electrons in low di-
mensional solids. They change the translational s&mmetry of the crystal.
If their periodicity is incommensurate to that of the underlying latticev
the density wave can slide through the crystal carrying aﬁ electrical
current. This is often called the "Frdhlich sliding mode". Many effects
hinder the free sliding of the Frohlich mode leading to its so called
"pinning".

Clearly, impurities are one of the basic pinning mechanisms. In the
present work, the linear ac respdnse of charge dehsity waves pinned by
impurities is studied. In particular, the influence of reduced quasi par-
ticle screening on the microwave response is investigated on the basis of
an extended Fukuyama-Lee-Rice (FLR) description of charge density wave
(CDW) dynamics.

Our starting point is Littlewood's formula [1] for the measured ac .

conductivity
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where ng,g';w) is the propagator of the linearized FLR equation with
modified damping: Yo > yo+Ay(g,w). From three-dimensional electrodynamics
we find [2] for the resistivity function R(lf,w)*unAY(l_g,w)/m2 (w_.: CDW

p¢ po
plasma frequency)

CML2L2 L Wy 2 2w
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This differs from the result in [1]. In the dynamic limit and for

vanishing transverse momentum k =0, however, both formula lead to

t

Yy >y . (w) =y +Ay(w) = y + (3)
o ren o o

o

with two new frequency scales: longitudinal optical phason fre-

i) W
quency, ii) wr=q"°qp(T)/€A = dielectric relaxation frequency of the quasi
particles in the Peierls state. In contrast to [3], we retain the fre-
quency dependence in Yren'

Dp in (1) still contains the impurities. While in [1] an approximate
treatment of Dp was given by using an'ad hoc distribution of localized
modes we rely on self averaging to express D in terms of the impurity

averaged propagator of the modified FLR equation:

D (l_fy’lf;w) = <D (515;0))>

D (K,w) . %)
p p -

By simple algebra it then follows that the CDW conductivity
OCDw(w)Eo(w)—R—1(9,w) is expressed in the form [2]

w2

, po |
ocp(@) = 7= l-iwd,

i en(Q,m)} . (5)
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Dren is the impurity averaged propagator which has yren(g,w) only in in-
ternal phason lines. Eq. (5) generalizes Fukuyama's formula [4] to the
case of long-range quasi particle interactions (descreening). With the
specific form (3) for Yren and earlier results for self energy functions
I(w) of the FLR equation [5] explicit results for o(w) become available.
The self energies have been evaluated for weak pinning (w.p.) in d=1,2,3
dimensions and also for strong pinning (s.p.) in d=1 [5]. Within the self

consistent Born approximation Zd(w) is given for w.p. by

Zd(w) = -C, +

1 -
g Jad [kP-w?-toy (@) -1y(w)17" . (6)

2(2m)d
In (6), Cd is the w.p. constant in d dimensions. Particular attention has
been paid to the analytic properties of Dren(w) thus obtained. It can be

shown that substitution of Yren(w) in place of Yo does not affect analy-

. s ) = 1
ticity conditions which read: Cc,>3/4, C.=C,-—2nk >1+¢n8m,
- 1 2772 4 e
C3EC2—kC/Uﬂ2>—1/256n2. kc is the momentum cut off in units of the inverse
1 -
FLR length [5]. Useful results for I (w) are r, = -C, + —— , I = —-C
d 1 1 Uz (w) 2 2
1 - 1 v
- — ¢n z(w) , £, = -C, - — z(w) , where z(w)=/£w2—1wY (w)-Z (w) . For
4 3 3 8n + ren d
s.p. in d=1 one obtains Zs(w) = - ZZs(w) , Wwhich corresponds to w.p. in

d=3 when 63=0. S.p. for d=3 is not covered consistently by the FLR phase
approach [5].

The dielectric constant eCDw(O) for w.p. and d=3 - the case hence-

forth considered - is found to be

2
wp¢

PRy
w3 1287 8n 3 2561r2

In the descreened case a low frequency relaxation mode [1] appears which

(7)

contains wost of the oscillator strength in Ime Dw(w) and thus determines

C

N S o cL PR : -
tCDw(O). The pinning peak in ReoCDw(m) is also affected: Defining the

o 2 . .
=-R f > >
pinning frequency W by wy eZ(wp) one finds for wp>wr (wLO Yo is also

172
understood) wp(d=1)=ww(1)[o.8u—ww(1)/quO]

: wp(d=2)=ww(2)[C2 +
1
H—ln(—*~——)
T w (2) ,
pinning frequency which is usually taken as approximation for w_. This is

“L0 172 1/2
] 1'7<.

, mp(d=3)=ww(3)[63+wLO/8nww(3) Here, w (d) is the FLR

reasonable for d=1 and d=2. For d=3, however, descreening leads to
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12, - (8)

wp(3) = [ww(3)wLo/81r
Due to selection rule breaking by inhomogeneous pinning Yo appears in wp
and stiffens the Frohlich mode. The concentration dependence of wp thus
becomes wp«c1/2 instead of the FLR result mw(3)ac. For wr>wp the. former

results [5] of the fﬁlly screened case are reobtained.

Finally a quantitative fit of the present theory to measured data

[6] on (NbSeu)2
-4.10125"1 Iy =2.10M 1571 =4.1010g"1 - -

wLO-N1O s ', w0y Y0210 s ', wrum s ', €) 30, Ao 1300kBK,

I is made. For the following consistent set of parameters,

usw(3)=€>'10”s'1 and 53=O.002,.the curve in the figure below is obtained.

It perfectly Jjoins the tail region of the response, where descreening

effects dominate, to the high frequency pinned mode.
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