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Abstract
The dynamics of the one dimensional CDW system with a complex order
parameter is investigated using the combined Monte Carlo - molecular

dynamics simulations. The results for the the dynamic structure factor
are présented. The dynamics of thermally activated phase slips in the
system with inertial dynamic is examined in the intermediate temperature
region, where the one dimensional fluctuation regime is still
appropriate.

Introduction

The dynamics of the phonons with wave vectors close to to the wave
vector of the Peierls transition was much investigated in the past using
the method of inelastic neutron diffraction(1],({2]. However the
theoretical understanding of this subject is still not complete and even
the dynamics of strictly one dimensional system is not fully understood.
This is the problem that we address in the present contribution. The
Peierls chain is described here by the effective Lagrangian

L=jdx [mlaet!® - cldnt1® - aj¥12 - (b/4)i+v14], (1)

~

The coefficients of this Lagrangian, in usual notation, are given by

a
b

1

a'(T/Tme-1), a's Muwo?, (2)
(7¢(3)/81mM)ve(a’'/T)2, . c = 2a'vg2/(2nT)2.
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where the electron-phonon coupling is assumed to be weak, #<<l. The
complex field ¢ describes the lattice deformation with wave vectors near
+2ky (hereafter the wave vector will be measured with respect to 2kg ) .
It should be noted that the Lagrangian (1), derived as a Landau
expansion{3] near the mean field transition temperature, Tup, gives also
a qualitatively good description of the dynamics of the system for
T<<Tme if coefficients b and ¢ are fixed to their values at Tug. This
can be checked by comparing Lagrangian (1) with the Lagrangian obtained
from the low temperature (T<<Twmg) approach [4]. With appropriate change
of the coefficients (2) Eg.(l) can also account for the lattice dynamics
of the 1d system with Coulomb correlated charge density wave [5]. It
should be noted that damping mechanisms from external sources
(nonadiabatic effects from electrons, impurities etc.) are not included
in our description of the lattice dynamics. It turns out that damping
which arrises from anharmonicities 1is dominant at high temperatures
T~Twe. At lower temperatatures the low frequency properties (phasons)
may be affected by the damping effects that we neglected. However we do
not expect them to affect those properties (phase slips) that are
connected with amplitude fluctations at higher frequencies. In fact, the
amplitude mode was experimentally identified [2] as a well defined
phonon branch.

Dynamic structure factor .

We have studied the dynamics of the classical system described by
the Lagrangian (1) using the combined Monte Carlo - molecular dynamic
(MC/MD) numerical simulation. Let us first describe the results for the
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dynamic structure factor S(k,w) defined as the Fourier transform of
<ta(x,t)91(0,0)>=<¥2(x%,t)¥=2(0,0)>. Since the usual phonon picture
applies for high temperature T>>Tms where the renormalization of the
phonon dynamics by electrons is not important we will restrict ourselves
only about temperatures which are close to and bellow Tuy.

It 1is convenient +to write S(k,«) in terms of reduced variables.
Introducing the dimensionless function s we write S(k,w) as
S(k,w) = [(mc)*72/b] s(%,k/K,w/i?). Here & is the only dimensionless
parameter of the system @=(bT/iaic)(c/lal)2*’2 which for the Peierls
gystem of Eg.(2) is the fuction of T/Twe, doom (3/2) (T/Twme) -

(1-T/Tmp)~2/2. ¢» and K are some combinations of parameters with a
dimension of frequency and the wave vector. The choice

f= (lal/m)*/2 + m=t/2(bT/ctr2)2/2, (3)
K = (lal/c)*/2 + c=2/2 (bT/ct/2)1/3

proves convenient both for T/Tume<<l and TuTmp.

The result for S(k,w) obtained by MC/MD in the region near Tuy shows
a dispersive mode behaviour with a finite frequency at k=0. This is
different from the conventional picture in which the Kohn-Peierls phonon
softens to w=0 at Twr due to the wvanishing harmonic a-term in the
Lagrangian (1). Thus, the effect of fluctuations and the quartic b-term
iz to s=hift the frequency to the finite value and to retain there the
underdamped phonon picture present for T>>Tmg. The frequency of the
phonon with k=0 is uwg=0.71{=0.62%*/2us. It should be noted that the
ratio of this frequency and the frequency. wa(T=0) of the amplitude mode
at T=0, wa=%*’2uo [6],[4] is a pure number, 0.62. This may be compared
with the experiments provided that the interchain coupling is not too
pronunced at Tmr. In the blue bronze [2] Twms was estimated to 320K but
the two dimensional correlations also start in that temperature region
(Peierls transition occurs near 180K). The measured ratio ug/wa 1is
however 0.71, not very far from our result. The damping (half width of
the peak in S(k,w) at half maximum) of the k=0 phonon is obtained equal
to O.lup. This 1is also within the order of magnitude (factor 2
difference) of the observed damping[2]. For other Peierls materials the
neutron measurements at Tuy are not available because Twy is not within
the experimental range (eg. the crystal changes chemically before Twmey is
reached). However extrapolations, as for example in KCP where Tmy was
estimated{1] to be approximately 400K, show that the system is actually
described by the dispersive mode at Tup.

When the temperature is lowered below Twme we can follow the
transformation of the Peierls phonon towards the phase and the amplitude
mode. Fig.l. illustrates S(0O,w) down to T/Tme=0.443. The k=0 mode
becomes overdamped below 0.4Twmsy and the separation intoc the phase and
the amplitude mode starts below 0.3Tws. The phase mode dominates in
S(k,w) while both modes contribute equally in the sum rule for the
velocity-velocity correlation function V(k,w)= uw?S(k,w) (entering the
sum rule for the oscillator strengths). Temperature dependence of V(k,w)
is illustrated in Fig.2.. Let us mention again that it was
conventionally believed that +the ampliton-phason separation starts
close below Tup.

Finally, let wus note that the obtained temperature dependence of
S(k,w) has the implication [5] on the electronic pseudogap. The change
in the pseudogap from the "shallow" form, produced by the low frequency
2kg phonon, to the "sharp" form, characteristic for the system with well
defined CDW amplitude, occurs in the temperature range which is well
below TME‘ . :
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Thermally activated phase slips

Now we turn to the processes that are characteristic for the low
temperature dynamics of the order parameter and are partly responsible
for the crossover from the low temperature phason-ampliton dynamics to
the high temperature phonon dynamics. Qualitatively speaking this
crossover takes place in the temperature region where the fluctuation of
the amplitude is of the order of the average amplitude itself. Numerical
simulation showed that this happens above 0.3Tws. However, the local
fluctuations in which the amplitude vanishes occur even at lower
temperatures, i.e. before than the thermal fluctuation destroy the
amplitude of +the order parameter on the whole chain. The local
destruction of the amplitude may be accompanied by the sudden slip in
the phase of the order parameter by 21t. These phase slip processes are
essentialy of the same topological type as the processes induced near
the electrical contacts when an external electric field is applied to
the system. Their important characteristics is that they put the
electron into or out of the CDW condensate depending on the sign of the
phase jump. Formally, they are similar to phase slip fluctuations in
thin whisker superconductors. However the dynamics of phase slips is
different in superconductors because the order parameter obeys the time
dependent Ginzburg-Landau equation. Instead of the relaxational dynamics
in superconductors the inertial dynamics described by the Lagrangian (1)
comes in our problem. Nevertheless, the potential energy functionals are
of the same form and therefore the expression for the potential enerqgy
barrier involved in phase slips are analogous. For the Peierls chain
this barrier is given by Vpg=2.54 Tug(1-T/Tuz)3/2. The different type
of the dynamics involved shows in different prefactor v in the
expression for the average time «pg between successive phase slips. For
the section of the chain with the length L it is given by[7] 1/~pg(L)=
(L/des) - v exp(~Ves/T). dpe measures the region in which significant
change of the amplitude occurs in the phase slip (essentially the
amplitude coherence length).

In our simulations at low temperatures we made an extensive
examination of thermally induced phase slips. The assumption of their
random occurrence (Poisson distribution with characteristic time Tpg)
was checked together with the dominant temperature dependence that comes
from exp(-Ves/T). The next step is to determine v. In contrast to the
time dependent Ginzburg-Landau equation two time scales are present in
our problem - one of them is the inverse ampliton frequency, 1/wa, and
the other is the inverse of the phason peak linewidth, 1/t'. The absence
of the significant temperature dependence of v in the temperature range
covered by our simulations and the comparison of the numerical values
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for v with those for wa and i (wa is an order of magnitude larger than |-
at the lowest temperature reached) suggest that essentially wv=wa. Thus,
the fluctuations of the amplitude are responsible for crossing of the
potential energy barrier.

It should be mentioned here that phase slips can hardly be seen in
5(k,=). The reason is that other mechanisms which lead to finite widths
of ampliton and phason peaks are much more pronounced. The dominant low
temperature dependence of the linewidth is linear in T, due to the
purely kinematical reasons. The finite lifetime effects that come from
anharmonicities in the amplitude - phase Lagrangian [4] are also masked
by thig linear term.

The effect of phase slips may be seen if the impurities (8] are
present in the system because they shift the phase oscillations to
finite freguencies while the contribution of the phase «lip noise
renainsg near »=0. Alsgo, it sghould be recalled that in the system with
impurities the free movement of the charge density wave is hindered by
the pinning. However it may be argued [8] that the thermally activated
phase slips lead, at 1least when pure one dimensional systems are
concerned, to a finite contribution of the charge density wave to the DC
conductivity. The point is that the charge density wave deformed by the
static electric field may relax through thermally induced phase slips
which are accompanied by the conversion of the CDW current to the
normal current. These normal electrons may pass over the impurity and
enter the CDW condensate again.

The solution of the full problem of 1d electron in the random
potential produced by impurities [10], the possibility to interact with
the lattice fluctuations and enter the Peierls condensate trough phase
slips seems rather complicated and is not yet fully investigated.
However under the assumption that the phase slip rate regulates the
contribution of CDW to the electronic conductivity and that impurities
may be considered as transparent for electrons which jump from one
section of the chain to another, a rather simple reasoning gives [9]

JCDW ~ B 'T[‘(nae/zkg"C'dps)z((L}A/T)exp(—VPg/T)

where ne is the effective density of electrons in the condensate and the
linear concentration c¢ of impurities is assumed to satisfy the condition
cial<l.
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